Matroid theory

Date: 15 April 2024

Exercise 1. Let $M=(S, \mathcal{I})$ be a matroid whose ground set decomposes into two disjoint bases, and consider a coloring of S such that each color is used at most twice. Show that
(a) S can be covered by three rainbow independent sets of M one of which is a basis.
(b) S can be covered by $\lfloor\log |S|\rfloor+1$ rainbow bases.

Exercise 2. Let $D=(V, A)$ be a directed graph. Prove that the maximum size of a branching (i.e. a subgraph in which each vertex has indegree at most 1 and contains no cycle in the undirected sense) is equal to $|V|$ minus the number of source-components (i.e. strongly connected components with in-degree zero).

Exercise 3. Let F_{0}, \ldots, F_{k} denote the common independent sets generated by the matroid intersection algorithm. For $i=1,2$, let σ_{i} denote the closure operator of M_{i}. Show that $\sigma_{i}\left(f_{j}\right) \subseteq \sigma_{i}\left(F_{j+1}\right)$ holds for $j=0, \ldots, k-1$ and $i=1,2$.

Exercise 4. Let $M=(S, \mathcal{F})$ be a matroid, $c: S \rightarrow \mathbb{R}$ be a weight function, and $k \in \mathbb{Z}_{+}$. Furthermore, let $\mathcal{F}^{k}=\{F \in \mathcal{F}| | F \mid=k\}$. Prove that an independent set F of size k is c-maximal in \mathcal{F}^{k} if and only if

$$
\begin{gathered}
c(y) \leq c(x) \text { for every } y \in S-F, F+y \notin \mathcal{F}, x \in C(F, y), \text { and } \\
c(y) \leq c(x) \text { for every } y \in S-F, F+y \in \mathcal{F}, x \in F
\end{gathered}
$$

Exercise 5. Let B be a maximum-weight basis of a matroid $M=(S, r)$ with respect to weight function c. Let $x_{1}, \ldots, x_{k} \in B$ and $y_{1}, \ldots, y_{k} \in S-B$ such that

$$
\begin{gathered}
x_{i} \in C\left(B, y_{i}\right) \text { for } i=1, \ldots, k, \\
c\left(x_{i}\right)=c\left(y_{i}\right) \text { for } i=1, \ldots, k, \\
x_{h} \notin C\left(B, y_{j}\right) \text { if } h>j, c\left(x_{h}\right)=c\left(y_{h}\right) .
\end{gathered}
$$

Prove that $B^{\prime}=B-\left\{x_{1}, \ldots, x_{k}\right\}+\left\{y_{1}, \ldots, y_{k}\right\}$ is also a maximum weight basis.
Exercise 6. Given two matroids $M_{1}=\left(S, \mathcal{F}_{1}\right)$ and $M_{2}=\left(S, \mathcal{F}_{2}\right)$, we call a set $F \subseteq S$ a basis-intersection if it can be obtained as the intersection of a basis of M_{1} and a basis of M_{2}. Give an algorithm for deciding if a given common independent set F is a basis-intersection or not.

Exercise 7. Let $\mu_{\min }$ and $\mu_{\max }$ denote the minimum and the maximum size of a basis-intersection of M_{1} and M_{2}. Prove that for every $\mu_{\min } \leq j \leq \mu_{\max }$ there exists a basis-intersection of size j.

Exercise 8 (Brualdi). Let $G=(S, T ; E)$ be a bipartite graph, and $M_{1}=\left(S, r_{1}\right)$ and $M_{2}=\left(T, r_{2}\right)$ be matroids. We call a matching $F \subseteq E$ strongly independent if it covers independent sets both in M_{1} and M_{2}. Prove that the maximum size of a strongly independent matching is equal to

$$
\min \left\{r_{1}(X)+r_{2}(Y) \mid X \subseteq S, Y \subseteq T, X \cup Y \text { covers every edge of } G\right\}
$$

Exercise 9 (Kundu and Lawler). Let $M_{1}=\left(S, r_{1}\right)$ and $M_{2}=\left(S, r_{2}\right)$ be matroids with closure operators σ_{1} and σ_{2}, respectively. Let F_{1} and F_{2} be two common independent sets. Prove that there exists a common independent set F such that $F_{1} \subseteq \sigma_{1}(F)$ and $F_{2} \subseteq \sigma_{2}(F)$.

