Matroid theory

Date: 8 April 2024

Exercise 1. Let $M_{1}=\left(S, r_{1}\right)$ and $M_{2}=\left(S, r_{2}\right)$ be two matroids on the same ground set. Show that the problem of finding a common basis of the two matroids can be reduced to the case when one of the matroids is a partition matroid with upper bound one on every partition class.

Given two matroids $M_{1}=\left(S, r_{1}\right)$ and $M_{2}=\left(S, r_{2}\right)$, the covering number $\beta\left(M_{1}, M_{2}\right)$ of their intersection is the minimum number of common independent sets needed to cover S.

Exercise 2. Prove that $\beta\left(M_{1}, M_{2}\right) \leq \beta\left(M_{1}\right) \cdot \beta\left(M_{2}\right)$.
Aharoni and Berger conjectured a much stronger upper bound.
Conjecture 1 (Aharoni and Berger). $\beta\left(M_{1}, M_{2}\right)=\max \left\{\beta\left(M_{1}\right), \beta\left(M_{2}\right)\right\}$ if $\beta\left(M_{1}\right) \neq \beta\left(M_{2}\right)$ and $\beta\left(M_{1}, M_{2}\right) \leq \max \left\{\beta\left(M_{1}\right), \beta\left(M_{2}\right)\right\}+1$ otherwise.

Exercise 3. Prove that if both M_{1} and M_{2} are partition matroids, then $\beta\left(M_{1}, M_{2}\right)=\max \left\{\beta\left(M_{1}\right), \beta\left(M_{2}\right)\right\}$.
Exercise 4. Prove that if both M_{1} and M_{2} are strongly base orderable, then $\beta\left(M_{1}, M_{2}\right)=\max \left\{\beta\left(M_{1}\right), \beta\left(M_{2}\right)\right\}$.
Exercise 5. Let M_{1} and M_{2} be k-coverable rank- r matroids on a common ground set of size $k \cdot r$. Prove that M_{1} and M_{2} have a common basis.

Exercise 6. Let $M=(S, \mathcal{I})$ be a matroid whose ground set decomposes into two disjoint bases, and consider a coloring of S such that each color is used at most twice. Show that
(a) S can be covered by three rainbow independent sets of M one of which is a basis.
(b) S can be covered by $\lfloor\log |S|\rfloor+1$ rainbow bases.

Given a graph $G=(V, E)$, a proper edge coloring of G is an assignment of colors to the edges so that no two adjacent edges have the same color. The edge coloring number is the smallest integer k for which G has a proper edge coloring by k colors. The classical result of Kőnig states that the edge coloring number of bipartite graphs is equal to its maximum degree. If a list L_{e} of colors is given for each edge $e \in E$, then a proper list edge coloring of G is a proper edge coloring such that every edge e receives a color from its list L_{e}. The list edge coloring number is the smallest integer k for which G has a proper list edge coloring whenever $\left|L_{e}\right| \geq k$ for every $e \in E$. Galvin showed the following.
Theorem 2 (Galvin). The list edge coloring number of a bipartite graph is equal to its edge coloring number, that is, to its maximum degree.

We can extend these notions to matroids as well. A coloring of the ground set of a matroid M is called proper if each color class form an independent set of M. The coloring number of M is the minimum number of colors in a proper coloring. Note that this exactly the same as the covering number $\beta(M)$. If a list L_{s} of colors is given for each element $s \in S$, then a list coloring of M is a coloring of the ground set such that every element s receives a color from its list L_{s}, and elements having the same color form independent sets of M. The list coloring number $\beta_{\ell}(M)$ is the smallest integer k for which M has a proper list coloring whenever $\left|L_{s}\right| \geq k$ for every $s \in S$. The coloring number $\beta\left(M_{1} \cap M_{2}\right)$ and the list coloring number $\beta_{\ell}\left(M_{1} \cap M_{2}\right)$ can be defined analogously for the intersection of two matroids $M_{1}=\left(S, \mathcal{I}_{1}\right)$ and $M_{2}=\left(S, \mathcal{I}_{2}\right)$ on the same ground set S.

Exercise 7. Prove that if both M_{1} and M_{2} are of rank 2, then $\beta_{\ell}\left(M_{1} \cap M_{2}\right)=\beta\left(M_{1} \cap M_{2}\right)$.
Exercise 8. Prove that if both M_{1} and M_{2} are transversal matroids, then $\beta_{\ell}\left(M_{1} \cap M_{2}\right)=\beta\left(M_{1} \cap M_{2}\right)$.
Exercise 9. Prove that if both M_{1} and M_{2} are graphic matroids, then $\beta_{\ell}\left(M_{1} \cap M_{2}\right) \leq 2 \cdot \beta\left(M_{1} \cap M_{2}\right)$.

