Matroid theory

Date: 22 April 2024

Exercise 1 (Brualdi). Let $G=(S, T ; E)$ be a bipartite graph, and $M_{1}=\left(S, r_{1}\right)$ and $M_{2}=\left(T, r_{2}\right)$ be matroids. We call a matching $F \subseteq E$ strongly independent if it covers independent sets both in M_{1} and M_{2}. Prove that the maximum size of a strongly independent matching is equal to

$$
\min \left\{r_{1}(X)+r_{2}(Y) \mid X \subseteq S, Y \subseteq T, X \cup Y \text { covers every edge of } G\right\}
$$

Exercise 2 (Kundu and Lawler). Let $M_{1}=\left(S, r_{1}\right)$ and $M_{2}=\left(S, r_{2}\right)$ be matroids with closure operators σ_{1} and σ_{2}, respectively. Let F_{1} and F_{2} be two common independent sets. Prove that there exists a common independent set F such that $F_{1} \subseteq \sigma_{1}(F)$ and $F_{2} \subseteq \sigma_{2}(F)$.

Exercise 3. Develop a min-max theorem for the maximum weight of a common independent set of i elements.
Exercise 4 (Krogdahl). Prove that $c^{(k+1)}-c^{(k)} \leq c^{(k)}-c^{(k-1)}$, where $c^{(j)}$ denotes the maximal c-weight of a j-element common independent set.

Exercise 5. Let $G=(V, E)$ be a graph and $c_{1}, \ldots, c_{q}: E \rightarrow \mathbb{R}$ be q cost functions defined on its edges. Give an algorithm that finds q pairwise edge-disjoint spanning trees T_{1}, \ldots, T_{q} minimizing $\sum_{i=1}^{q} c_{i}\left(T_{i}\right)$.

Exercise 6. Let $M=(S, r)$ be a loop-free matroid and $J \subseteq S$ be a subset of at most k elements. Prove the following.
(A) If S can be partitioned into k independent sets, then S can be partitioned into k independent sets in such a way that each of them contains at most one element of J.
(B) If there are k disjoint bases, then there are k disjoint bases in such a way that each of them contains at most one element of J and the union of them includes J.

Exercise 7. Let M_{1}, \ldots, M_{k} be matroids over the same ground set S, and let I_{i} be an independent set of M_{i} for $i=1, \ldots, k$. Prove that these sets can be extended to disjoint independent sets covering S if and only if

$$
\sum_{i=1}^{k}\left[r_{i}\left(X \cup I_{i}\right)-\left|I_{i}\right|\right] \geq|X|
$$

for all $X \subseteq S^{\prime}$, where $S^{\prime}=S-\cup_{i=1}^{k} I_{i}$.
Exercise 8. Lt $G=(V, E)$ be an undirected graph and $c:\binom{V}{2} \rightarrow \mathbb{R}_{+}$be a cost function. Give an algorithm that determines a minimum cost graph $H=(V, F)$ for which $G+H=(V, E \cup F)$ contains k pairwise disjoint spanning trees.

