
Deep learning and continuous optimization

Spring semester 2023/24

Kristóf Bérczi

MTA-ELTE Matroid Optimization Research Group

Department of Operations Research, ELTE

General information

• First half of the semester: 5 lectures and practicals

• Course requirement: 50% exam (middle of semester, max 50pts), 50%

homework (max 50pts)

• Evaluation: 0-39 � 1, 40-54 � 2, 55-69 � 3, 70-84 � 4, 85-100 � 5

• Contact: kristof.berczi@ttk.elte.hu, Room 3.502

• Reading:

• D. Bertsimas, J.N. Tsitsiklis. Introduction to linear optimization.

• N. Vishnoi. Algorithms for convex optimization.

• L.C. Lau. Convexity and optimization.

• S. Bubeck. Convex Optimization: Algorithms and Complexity.

• S. Boyd, L. Vandenberghe. Convex Optimization.

• `I'm a bandit' blog by Sébastien Bubeck.

• `3Blue1Brown' channel by Grant Sanderson.

https://convex-optimization.github.io/
https://cs.uwaterloo.ca/~lapchi/cs798/notes.html
http://research.microsoft.com/en-us/um/people/sebubeck/bubeck15.pdf
https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf
https://blogs.princeton.edu/imabandit/
https://www.3blue1brown.com

Linear programming

Systems of linear equations

Example: A �rm produces two di�erent goods using two di�erent raw materials.

The available amounts of materials are 12 and 5, respectively. The goods

require 2 and 3 units of the �rst material, and both require 1 unit of the second

material. Find a production plan that uses all the raw materials.

Idea: Let x1 and x2 denote the amounts of the �rst and second goods

produced, respectively. Then the constraints can be written as

2 · x1 + 3 · x2 = 12

x1 + x2 = 5

x1 x2

2 3

1 1
= 12

5

Solution

Step 1. x1 = 5− x2
Step 2. 10− 2 · x2 + 3 · x2 = 12 ⇒ x2 = 2

Step 3. x1 = 5− 2 = 3

In general

In general: Gauss elimination

x1 x2 . . . xn

a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...

am1 am2 . . . amn

=

b1
b2
...

bm

⇒

x1 x2 . . . xn

1 a′
12

. . . a′
1n

0 1 . . . a′
2n

...
...

. . .
...

0 0 . . . a′mn

=

b′
1

b′
2

...

b′m

Reduction of the matrix using elementary row operations, such as

• swapping two rows,

• multiplying a row by a nonzero number,

• adding a multiple of a row to another row.

Remarks:

• The set of solutions does not change.

• A �nal solution is `easy' to read out.

Existence of a solution

Assume that your boss gives you such a problem, that is, solve Ax = b.

How to prove that a solution exists?

• Just provide a solution x .

How to prove that there is no solution?

• Gauss elimination concludes whether there exists a solution or not.

BUT: this requires the understanding of the algorithm (that you cannot

necessarily assume about your boss...)

• Would it be possible to provide some `shorter' proof?

Fredholm alternative theorem

Fredholm alternative theorem

There exists an x satisfying Ax = b if and only if there exists no y such that

yA = 0, yb ̸= 0.

Proof of `only if' direction.

We show that at most one of x and y may exist. Suppose to the contrary that

x and y are such that Ax = b and yA = 0, yb ̸= 0. Then

0 = (yA)x = y(Ax) = yb ̸= 0,

a contradiction.

Conclusion: The non-existence of a solution can be proved by providing y .

Geometric interpretation

Naming convention:

Primal problem

Ax = b (P)

Dual problem

yA = 0

yb ̸= 0
(D)

⇒ Fredholm's theorem states that exactly one of (P) and (D) has a solution.

• The set H := {x : ax = b} is a hyperplane.

• y is a normal vector of the hyperplane H = {x : ax = b} if yx = 0 for

every x ∈ H.

Fredholm as separation theorem

Either b lies in the subspace generated by the

columns of A, or it can be separated from it by

a homogeneous hyperplane with normal vector y .

The diet problem

What happens if, instead of equalities, a system of linear inequalities is given?

Example: A list of available foods is given together with the nutrient content.

Furthermore, the requirement per day of each nutrient is also prescribed. For

example, the data corresponding to two types of fruits (F1 and F2) and three

types of nutrients (fats, proteins, vitamins) is as follows:

Fats Proteins Vitamins Available

F1 1 4 5 3

F2 0 2 9 5

Req. 1 5 14

The problem is to �nd how much of each fruit to consume per day so as to get

the required amount per day of each nutrient, if one can consume at most 2 kg

of fruits per day.

Modeling the problem

Fats Proteins Vitamins Available

F1 1 4 5 3

F2 0 2 9 5

Req. 1 5 14

Let x1 and x2 denote the amounts of fruits F1 and F2 to be consumed per day.

x1 ⩾ 1

4x1 + 2x2 ⩾ 5

5x1 + 9x2 ⩾ 14

x1 + x2 ⩽ 2

Questions:

• How to decide feasibility?

• How to �nd a solution (if exists) algorithmically?

• How to verify that there is no solution?

Di�erent forms

Observations:

• An equality ax = b can be represented as a pair of inequalities ax ⩽ b and

−ax ⩽ −b.

• An inequality ax ⩽ b can be represented as the combination of an equality

ax + s = b and a non-negativity constraint s ⩾ 0, where s is called a slack

variable.

• A non-positivity constraint x ⩽ 0 can be expressed as a non-negativity

constraint −x ⩾ 0.

• A variable x unrestricted in sign can be replaced everywhere by x+ − x−,

where x+, x− ⩾ 0.

General form

Px0 + Ax1 = b0
Qx0 + Bx1 ⩽ b1

x1 ⩾ 0

Standard form

Ax = b

x ⩾ 0

Canonical form

Qx ⩽ b

x ⩾ 0

Farkas' lemma

Farkas' lemma, standard form

There exists an x satisfying (P) Ax = b, x ⩾ 0 if and only if there exists no y

such that (D) yA ⩾ 0, yb < 0.

Farkas' lemma as separation theorem

Either b lies in the cone generated by the columns

of A, or it can be separated from it by a homoge-

neous hyperplane with normal vector y .
y

b {Ax : x ≥ 0}

Proof of the `only if' direction.

We show that at most one of x and y may exist. Suppose to the contrary that

x and y are such that Ax = b, x ⩾ 0 and yA ⩾ 0, yb < 0. Then

0 ⩽ (yA)x = y(Ax) = yb < 0,

a contradiction.

Farkas' lemma in general

Farkas' lemma, general form

There exists an x = (x0, x1) satisfying

(P) Px0 + Ax1 = b0,Qx0 + Bx1 ⩽ b1, x1 ⩾ 0

if and only if there exists no y = (y0, y1) such

that

(D) y0P + y1Q = 0, y0A + y1B ⩾ 0, y1 ⩾

0, y0b0 + y1b1 < 0.

P A

Q B

x0 x1

c0 c1

y0

y1

b0

b1≤

=

0 ≤

≥=

≥

0

0 0

Conclusion: The feasibility/infeasibility of a system of linear inequalities can be

proved by providing a solution to the primal/dual problem, respectively.

Remaining question: How to �nd such a solution?

⇒ We will answer this in a far more general setting!

Geometric background I

Example

x1+2 · x2 ⩽ 8

2 · x1+ x2 ⩽ 6

x1, x2 ⩾ 0
bb b

b b b

b b b

b b b b

b

bb

b

b

b b b b

b b b

b

b b b b b b

b

b

b

b

b

x1

x2

• An inequality ax ⩽ b de�nes a half space.

• The solution set is the intersection of a �nit number of half spaces, called

a polyhedron.

Geometric background I

Example

x1+2 · x2 ⩽ 8

2 · x1+ x2 ⩽ 6

x1, x2 ⩾ 0
bb b

b b b

b b b

b b b b

b

bb

b

b

b b b b

b b b

b

b b b b b b

b

b

b

b

b

x1

x2

• An inequality ax ⩽ b de�nes a half space.

• The solution set is the intersection of a �nit number of half spaces, called

a polyhedron.

Geometric background I

Example

x1+2 · x2 ⩽ 8

2 · x1+ x2 ⩽ 6

x1, x2 ⩾ 0
bb b

b b b

b b b

b b b b

b

bb

b

b

b b b b

b b b

b

b b b b b b

b

b

b

b

b

x1

x2

• An inequality ax ⩽ b de�nes a half space.

• The solution set is the intersection of a �nit number of half spaces, called

a polyhedron.

Geometric background I

Example

x1+2 · x2 ⩽ 8

2 · x1+ x2 ⩽ 6

x1, x2 ⩾ 0
bb b

b b b

b b b

b b b b

b

bb

b

b

b b b b

b b b

b

b b b b b b

b

b

b

b

b

x1

x2

• An inequality ax ⩽ b de�nes a half space.

• The solution set is the intersection of a �nit number of half spaces, called

a polyhedron.

Geometric background I

Example

x1+2 · x2 ⩽ 8

2 · x1+ x2 ⩽ 6

x1, x2 ⩾ 0
bb b

b b b

b b b

b b b b

b

bb

b

b

b b b b

b b b

b

b b b b b b

b

b

b

b

b

x1

x2

• An inequality ax ⩽ b de�nes a half space.

• The solution set is the intersection of a �nit number of half spaces, called

a polyhedron.

Geometric background I

Example

x1+2 · x2 ⩽ 8

2 · x1+ x2 ⩽ 6

x1, x2 ⩾ 0
bb b

b b b

b b b

b b b b

b

bb

b

b

b b b b

b b b

b

b b b b b b

b

b

b

b

b

x1

x2

• An inequality ax ⩽ b de�nes a half space.

• The solution set is the intersection of a �nit number of half spaces, called

a polyhedron.

Geometric background II

b

b

b b

b

b

b

• Given a polyhedron P, a point x ∈ P is a vertex of P if there exists no y

such that x + y , x − y ∈ P.

• A polytope is the convex hull of a �nite number of points.

Thm.

Every polytope is a polyhedron, and every bounded polyhedron is the convex

hull of its vertices.

Geometric background III

Example

x1+2 · x2 ⩽ 8

2 · x1+ x2 ⩽ 6

x1, x2 ⩾ 0
bb b

b b b

b b b

b b b b

b

bb

b

b

b b b b

b b b

b

b b b b b b

b

b

b

b

b

x1

x2

Goal: Maximize/minimize a linear objective function over the set of solutions.

⇒ Example: max{x1 + x2}.

Idea: Start from a vertex, and move to a neighboring vertex with improved

objective value.

Geometric background III

Example

x1+2 · x2 ⩽ 8

2 · x1+ x2 ⩽ 6

x1, x2 ⩾ 0
bb b

b b b

b b b

b b b b

b

bb

b

b

b b b b

b b b

b

b b b b b b

b

b

b

b

b

x1

x2
x1 + x2 = 7

Goal: Maximize/minimize a linear objective function over the set of solutions.

⇒ Example: max{x1 + x2}.

Idea: Start from a vertex, and move to a neighboring vertex with improved

objective value.

Geometric background III

Example

x1+2 · x2 ⩽ 8

2 · x1+ x2 ⩽ 6

x1, x2 ⩾ 0
bb b

b b b

b b b

b b b b

b

bb

b

b

b b b b

b b b

b

b b b b b b

b

b

b

b

b

x1

x2
x1 + x2 = 6

Goal: Maximize/minimize a linear objective function over the set of solutions.

⇒ Example: max{x1 + x2}.

Idea: Start from a vertex, and move to a neighboring vertex with improved

objective value.

Geometric background III

Example

x1+2 · x2 ⩽ 8

2 · x1+ x2 ⩽ 6

x1, x2 ⩾ 0
bb b

b b b

b b b

b b b b

b

bb

b

b

b b b b

b b b

b

b b b b b b

b

b

b

b

b

b

x1

x2
x1 + x2 = 14

3

Goal: Maximize/minimize a linear objective function over the set of solutions.

⇒ Example: max{x1 + x2}.

Idea: Start from a vertex, and move to a neighboring vertex with improved

objective value.

Geometric background III

Example

x1+2 · x2 ⩽ 8

2 · x1+ x2 ⩽ 6

x1, x2 ⩾ 0
bb b

b b b

b b b

b b b b

b

bb

b

b

b b b b

b b b

b

b b b b b b

b

b

b

b

b

b

x1

x2

Goal: Maximize/minimize a linear objective function over the set of solutions.

⇒ Example: max{x1 + x2}.

Idea: Start from a vertex, and move to a neighboring vertex with improved

objective value.

Geometric background III

Example

x1+2 · x2 ⩽ 8

2 · x1+ x2 ⩽ 6

x1, x2 ⩾ 0
bb b

b b b

b b b

b b b b

b

bb

b

b

b b b b

b b b

b

b b b b b b

b

b

b

b

bb

x1 + x2 = 0
x1

x2

Goal: Maximize/minimize a linear objective function over the set of solutions.

⇒ Example: max{x1 + x2}.

Idea: Start from a vertex, and move to a neighboring vertex with improved

objective value.

Geometric background III

Example

x1+2 · x2 ⩽ 8

2 · x1+ x2 ⩽ 6

x1, x2 ⩾ 0
bb b

b b b

b b b

b b b b

b

bb

b

b

b b b b

b b b

b

b b b b b b

b

b

b

b

bb

x1 + x2 = 3

b
x1

x2

Goal: Maximize/minimize a linear objective function over the set of solutions.

⇒ Example: max{x1 + x2}.

Idea: Start from a vertex, and move to a neighboring vertex with improved

objective value.

Geometric background III

Example

x1+2 · x2 ⩽ 8

2 · x1+ x2 ⩽ 6

x1, x2 ⩾ 0
bb b

b b b

b b b

b b b b

b

bb

b

b

b b b b

b b b

b

b b b b b b

b

b

b

b

bb

x1 + x2 = 14
3

b

b

x1

x2

Goal: Maximize/minimize a linear objective function over the set of solutions.

⇒ Example: max{x1 + x2}.

Idea: Start from a vertex, and move to a neighboring vertex with improved

objective value.

History

1827, Fourier: Fourier-Motzkin elimination

1939, Kantorovich: reducing costs of army, general LP

1940's, Koopmans: economic problems as LPs

1941, Hitchcock: transportation problems as LPs

1946-47, Dantzig: general LP for planning problems in US Air Force (simplex

method)

1979, Khachiyan: ellipsoid method, LP is solvable in linear time (more

theoretical than practical)

1984, Karmakar: interior-point method (can be used in practice)

Linear programs

We would like to solve problems of the form

General form

max c0x0 + c1x1
s.t. Px0 + Ax1 = b0

Qx0 + Bx1 ⩽ b1
x1 ⩾ 0

Standard form

max cx

s.t. Ax = b

x ⩾ 0

Canonical form

max cx

s.t. Qx ⩽ b

x ⩾ 0

Remarks:

• A minimization problem min cx can be reformulated as a maximization

problem max (−c)x and vice versa.

• The optimal solution can be obtained by `moving' a hyperplane with

normal vector c towards the polyhedron, and �nding the �rst point where

they meet [Be careful: min or max?]

⇒ Intuition: the optimum is always attained at a vertex.

Geometric background IV

b

b

b b

bb

b

b

b

b b

bb

b

Possible cases:

• single optimal solution,

• in�nite number of optimal solutions, or

• no optimal solution (unbounded objective value).

Geometric background V

Thm.

Let P = {x : Qx ⩽ b} where the columns of Q are linearly independent. Then

x ∈ P is a vertex if and only if it can be obtained by taking a non-singular

r(Q)× r(Q) submatrix Q ′ of Q and the corresponding part b′ of b, and solving

the system Q ′x = b′.

Remarks:

• The number of such submatrices, and so the number of vertices is �nite.

⇒ If each vertex is visited at most once, then the procedure terminates.

• When the columns are non-independent, then there is an in�nite number

of basic feasible solutions. However, there are only a �nite number of

so-called strong basic feasible solutions, and, if it exists, the optimum is

attained in one of them.

Simplex method

B

x = B−1b

b≤a′a

B

x = B−1b

b≤

⇓

B

x′ = B′−1b

b≤a′

⇓

Problems

• Running time?

• Optimal solution?

Running time

Problem 1: The simplex algorithm might fail to terminate.

Reason: The algorithm can fall into cycles between bases associated with the

same basic feasible solution and objective value.

Solution: Careful pivoting rule, e.g. Bland's rule prevents cycling.

Problem 2: E�cient in practice, but for almost every variant, there is a family

of linear programs for which it performs badly.

Reason: The number of vertices of a polyhedron can be exponentially large.

Solution: Sub-exponential pivot rules are known.

Major open problem: Is there a variant with polynomial running time?

• Hirsch's conjecture: Let P be a d-dimensional convex polytope with n

facets. Then the diameter of P is at most n − d .

• Counterexample by Francisco Santos, 2011 (86 facets, 43-dimensional).

Duality theorem

Problem 3: Is the solution optimal?

Duality theorem

Consider the problems

(P) max(c0x0 + c1x1) s.t. Px0 + Ax1 =

b0,Qx0 + Bx1 ⩽ b1, x1 ⩾ 0

and

(D) min(y0b0 + y1b1) s.t. y0P + y1Q =

c0, y0A+ y1B ⩾ c1, y1 ⩾ 0.

Then exactly one of the followings hold:

1 both (P) and (D) are empty,

2 (D) is empty and (P) is unbounded,

3 (P) is empty and (D) is unbounded,

4 both (P) and (D) have a solution, and

max = min.

P A

Q B

x0 x1

c0 c1

y0

y1

b0

b1≤

=

0 ≤

≥=

≥

0

Reading assignment

D. Bertsimas, J.N. Tsitsiklis. Introduction to linear optimization.

• Chapter 1, Sections 1.1, 1.2, 1.4, and 1.5

• Chapter 2, Sections 2.1 and 2.2

• Chapter 4, Sections 4.1-4.3, 4.6

A. Frank, T. Király. Operációkutatás (in Hungarian).

• Chapter 2

• Chapter 3

• Chapter 4

• Chapter 6

Exercises

1 Consider the problem x2 ⩽ 4, x1 + x2 ⩽ 6, 2x1 + x2 ⩽ 10, x1, x2 ⩾ 0. Represent these

constraints on the plane. Find a point that maximizes x1 + 2x2. (3pts)

2 Let A ∈ Rm×n, b ∈ Rm, and c1, . . . , ck ∈ Rn. Formulate the following problem as an

LP: Ax = b, x ⩾ 0, min f (x), where f (x) := max{c1x , . . . , ckx}. (2pts)
3 Reduce the following systems of inequalities to each other (in the sense that if we can

solve one of them, then we can solve any of them):

Ax = b

x ⩾ 0

Bx ⩽ b

x ⩾ 0
Qx ⩽ b

Px0 = b0
Qx ⩽ b1

(4pts)

4 Is it true, that a set K ⊆ Rn is convex if and only if for any x , y ∈ K we have

(x + y)/2 ∈ K? (1pt)

Convexity

Convex sets

A set K ⊆ Rn is convex if for all x , y ∈ K and θ ∈ [0, 1], we have

θx + (1− θ)y ∈ K .

b

b

b

b

Examples:

• Polytopes: K = {x ∈ Rn : ⟨ai , x⟩ ⩽ bi for i = 1, . . . ,m}, where ai ∈ Rn

and bi ∈ R for i = 1, . . . ,m.

• Ellipsoids: K = {x ∈ Rn : xTAx ⩽ 1 where A ∈ Rn×n is a positive de�nite

matrix.

• Balls (in ℓp norms for p ⩾ 1): K = {x ∈ Rn : p

√∑n
i=1 |xi − ai |p ⩽ 1},

where a ∈ Rn is a vector.

Convex functions

A function f : Rn → R is convex if its domain is a convex set and for all

x , y ∈ K and θ ∈ [0, 1], we have

f (θx + (1− θ)y) ⩽ θf (x) + (1− θ)f (y).

If the inequality always holds as strict inequality, the function is strictly

convex.

The function f is concave or strictly concave if −f is convex or strictly

convex, respectively.

Remark: If f : K → Rn is a convex function, then setting f (x) = +∞ for

x /∈ K results in a convex function when the arithmetic operations on

R ∪ {+∞} are interpreted in the reasonable way.

Semide�nite matrices

A matrix M ∈ Rn×n is symmetric if MT = M.

The identity matrix of size n × n is denoted by In.

A symmetric matrix M is positive semide�nite (PSD) if xTMx ⩾ 0 holds for

all x ∈ Rn, and this is denoted by M ⪰ 0.

M is positive de�nite (PD) if xTMX > 0 holds for all non-zero x ∈ Rn, and

this is denoted by M ≻ 0.

We de�ne M ⪰ N ⇔ M − N ⪰ 0 and M ≻ N ⇔ M − N ≻ 0.

Calculus I

We are working with `su�ciently smooth' functions f : Rn → R.

The derivative of f (x1, . . . , xn) is called the gradient, and is de�ned as

∇f (x) =

[
∂f

∂x1
(x), . . . ,

∂f

∂xn
(x)

]

The directional derivative of f in the direction d is ⟨∇f (x), d⟩.
The second derivatives of f can be summerized in the Hessian matrix

∂2f
∂x2

1

∂2f
∂x1∂x2

. . . ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂x2

1

. . . ∂2f
∂x2∂xn

...
...

.
∂2f

∂xn∂x1

∂2f
∂xn∂x2

. . . ∂2f
∂x2n

Remark: The Hessian is symmetric if f is su�ciently di�erentiable.

Calculus II

Taylor expansion

The Taylor series expansion of f around x = a is

f (x) = f (a) + ⟨∇f (a), x − a⟩︸ ︷︷ ︸
�rst order approximation

+
1

2
(x − a)T∇2f (a)(x − a)

︸ ︷︷ ︸
second order approximation

+ . . .

Consider a function in one dimension, i.e. f : R → R.

When f is convex, the tangent is `below'

the graph, i.e.

f (y) ⩾ f (x) + f ′(x)(y − x). b

b

b

yx

f(x)

f(y)

f(x) + f′(x)(y − x)

First order condition

First order condition

Let f be a di�erentiable function f : Rn → R over a convex set K . Then f is

convex if and only if for all x , y ∈ K

f (y) ⩾ f (x) + ⟨∇f (x), y − x⟩.

Proof of the one-dimensional case.

⇒ For any θ ∈ [0, 1], we have

(1− θ)f (x) + θf (y) ⩾ f (θy + (1− θ)x) = f (x + θ(y − x)).

Subtracting (1− θ)f (x) and dividing by θ yields

f (y) ⩾ f (x) +
f (x + θ(y − x))− f (x)

θ
.

Taking limit θ → 0 gives f (y) ⩾ f (x) + ⟨∇f (x), y − x⟩.

First order condition

First order condition

Let f be a di�erentiable function f : Rn → R over a convex set K . Then f is

convex if and only if for all x , y ∈ K

f (y) ⩾ f (x) + ⟨∇f (x), y − x⟩.

Proof of the one-dimensional case.

⇐ Let z = θx + (1− θ)y . The �rst order approximation underestimates both

f (x) and f (y), hence

f (x) ⩾ f (z) +∇(z)T (x − z),

f (y) ⩾ f (z) +∇(z)T (y − z).

Therefore

(1− θ)f (x) + θf (y) ⩾ f (z) +∇f (z)T (θx + (1− θ)y − z) = f (θ(y) + (1− θ)x).

Second order condition

In the one-dimensional case, f ′′(x) ⩾ 0 when

f is convex, that is, the slope of the tangent

is non-decreasing, as otherwise when the slope

decreases the function becomes non-convex.
b

b

b

b

b

b

Second order condition

Let f be twice di�erentiable such that dom f is open. Then f is convex if and

only if ∇2f (x) ⪰ 0 for all x ∈ dom f .

Local vs. global optimum I

Convex optimization problem:

infx∈K f (x)
usually→ minx∈K f (x)

b

b

b

b

Intuition: ∇f (x) = 0 when x is optimal.

Problem: ∇f (x) = 0 may correspond to a local optimum/maximum.

Global optimum

If the domain of a convex di�erentiable function f is Rn, then x is an optimal

solution to infx∈Rn f (x) if and only if ∇f (x) = 0.

Local vs. global optimum II

Proof of the `if' direction.
Assume that ∇f (x0) = 0. Since f is convex, we know that for all y ∈ Rn we

have

f (y) ⩾ f (x0) + ⟨∇f (x0), y − x0⟩
= f (x0) + ⟨0, y − x0⟩
= f (x0).

Remark: In the constrained setting, i.e. when K ̸= Rn, the following holds.

Global optimum

If f is a convex di�erentiable function, then x is an optimal solution to

infx∈Rn f (x) if and only if ⟨∇f (x), y − x⟩ ⩾ 0 for all y ∈ Rn.

Convex programs

A convex program can be written as follows.

Convex program

inf f0(x)

s.t. fi (x) ⩽ 0 for 1 ⩽ i ⩽ m

hj(x) = 0 for 1 ⩽ j ⩽ p

• fi is convex for i = 0, . . . ,m

• hj is convex for j = 1, . . . , p

Remark: The domain of the problem is D :=
(⋂m

i=0 dom fi
)
∩
(⋂p

j=1 dom hj
)
,

which is a convex set ⇒ Roughly speaking, this makes the problem tractable.

Question: Can we de�ne a dual program? How to give a lower bound?

Dual programs I

Idea: �move the constraints into the objective function�

The Lagrangian associated with the problem is

L(x , λ, µ) := f0(x) +
m∑
i=1

λi fi (x) +

p∑
j=1

µjhj(x),

where the λi s and µjs are called Lagrangian multipliers, and λ ∈ Rm and

µ ∈ Rp are called the dual variables.

The Lagrangian dual function is the min value of the Lagrangian over x ,

g(λ, µ) := inf
x
L(x , λ, µ).

Dual programs II

Let OPTP denote the optimum value of the primal problem, and let x̂ be an

arbitrary feasible solution. Furthermore, assume that λ ⩾ 0. Then

g(λ, µ) ⩽ f0(x̂) +
m∑
i=1

λi fi (x̂) +

p∑
j=1

µjhj(x̂)

⩽ f0(x̂),

hence g(λ, µ) ⩽ inf
x feasible

f0(x) = OPTP .

Conclusion:

• This gives a lower bound when λ ⩾ 0 and g(λ, µ) > −∞ ⇒ Such a pair

λ, µ is called dual feasible.

Weak duality

The goal is to get the best lower bound on OPTP using the Lagrangian dual.

The dual program is thus de�ned as

Dual program

max g(λ, µ)

s.t. λ ⩾ 0

Let OPTD denote the optimal value of the dual. Then weak duality holds by

construction, that is, OPTD ⩽ OPTP .

Remarks:

• The dual program is always convex, regardeless of the primal.

• That is, for any primal program (even though non-convex), we can always

write a convex program that gives a lower bound on the primal objective

value.

Strong duality

Question: Does OPTD = OPTP always holds?

Answer: Unfortunately NOT. But!

The Slater's condition requires that there is x ∈ rel int(D) such that fi (x) < 0

for 1 ⩽ i ⩽ m and hj(x) = 0 for 1 ⩽ j ⩽ p.

(That is, the exists an interior point in the domain, which is a feasible solution,

and satis�es the non-a�ne inequality constraints strictly.)

Strong duality

If Slater's condition holds, then OPTD = OPTP .

Complementary slackness

Assume that OPTD = OPTP . Let x
∗ be a primal, λ∗, µ∗ be dual optimal

solutions. Then

f0(x
∗) = g(λ∗, µ∗)

= inf
x
L(x , λ∗, µ∗)

⩽ L(x∗, λ∗, µ∗)

= f0(x
∗) +

m∑
i=1

λ∗
i fi (x

∗) +
p∑

j=1

µ∗
j hj(x

∗)

⩽ f0(x
∗),

as λ ⩾ 0 (dual feasible) and fi (x
∗) ⩽ 0, hj(x

∗) = 0 (primal feasible).

Therefore

• x∗ is a minimizer of L(x , λ∗, µ∗), and
• λ∗

i fi (x
∗) = 0 for 1 ⩽ i ⩽ m, called the complementary slackness

condition, meaning that the non-zero pattern of λ∗
i and fi (x

∗) must be

complementary.

Karush-Kuhn-Tucker (KKT) conditions I

Assume that f0, f1, . . . , fm, h1, . . . , hp are all di�erentiable.

Since x∗ minimize L(x , λ∗, µ∗) by the above, the gradient of L at x∗ must be

zero, that is,

∇f0(x
∗) +

m∑
i=1

λ∗
i ∇fi (x

∗) +
p∑

j=1

µ∗
j ∇hj(x

∗) = 0.

To sum up, the following are some necessary conditions for any pair of primal

and dual optimal solutions.

Primal feasibility: fi (x
∗) ⩽ 0 for 1 ⩽ 1 ⩽ m, hj(x

∗) = 0 for 1 ⩽ j ⩽ p.

Dual feasibility: λ∗
i ⩾ 0 for 1 ⩽ i ⩽ m.

Complementary slackness: λ∗
i fi (x

∗) = 0 for 1 ⩽ i ⩽ m.

Lagrangian optimality: ∇f0(x
∗) +

∑m
i=1 λ

∗
i ∇fi (x

∗) +
∑p

j=1 µ
∗
j ∇hj(x

∗) = 0.

This set of conditions is called the KKT conditions.

Karush-Kuhn-Tucker (KKT) conditions II

When the primal problem is convex, the KKT conditions are also su�cient!

⇒ Any x∗, λ∗, µ∗ satisfying KKT must be primal and dual optimal

solutions.

Reason: If the primal is convex, thenL(x , λ, µ) is convex in x when λ, µ are

�xed. Hence a local optimal solution is also a global optimal solution. More

precisely:

g(λ∗, µ∗) = inf
x
L(x , λ∗, µ∗)

= L(x∗, λ∗, µ∗)

= f0(x
∗) +

m∑
i=1

λ∗
i fi (x

∗) +
p∑

j=1

µ∗
j hj(x

∗)

= f0(x
∗).

Summary: For a convex problem with di�erentiable functions, if Slater's

condition is satis�ed, then the KKT conditions are necessary and su�cient for

optimality.

Reading assignment

N. Vishnoi. Algorithms for convex optimization.

• Chapter 1

• Chapter 2

• Chapter 3

• Chapter 4

• Chapter 5

L.C. Lau. Convexity and optimization.

• Lecture 1

• Lecture 2

• Lecture 3

• Lectures 4-5

https://convex-optimization.github.io/
https://cs.uwaterloo.ca/~lapchi/cs798/notes.html

Exercises

1 Verify the following statements. (5pts)

a eax is convex on R for any a ∈ R.
b xa is convex on R>0 when a ⩾ 1 or a ⩽ 0, otherwise it is concave.

c log x is concave on R>0.

d x log x is convex on R>0.

e max{x1, . . . , xn} is convex on Rn.

2 Consider the optimization problem

min x2 + 2x + 1

s.t. (x + 2)(x − 4) ⩽ 0

with variable x ∈ R.

(a) Give the feasible set, the optimal value, and the optimal solution. (1pt)

(b) Plot the objective x2 + 2x + 1 versus x . On the same plot, show the

feasible set, optimal point and value, and plot the Lagrangian L(x , λ) versus

x for a few positive values of λ. Derive and sketch the Lagrange dual

function g . (2pts)

(c) State the dual problem, and verify that it is a concave maximization

problem. Find the dual optimal value and dual optimal solution λ∗. (2pts)

Gradient descent, Mirror

descent, and Multiplicative

Weights Update

Setting

Objective: minx∈Rn f (x) (unconstrained setting)

Model: 1st-order oracle is given, i.e., we can query the gradient at any point.

Solution: Given ε > 0, output a point x ∈ Rn s.t. f (x) ⩽ y∗ + ε, where y∗

denotes the optimal value.

• The running time will be proportional to 1/ε, hence it is not polynomial.

However, we will see that in this setting one cannot obtain polynomial time

algorithms.

Remark: As f is convex, a local minimum is a global minimum. So as long as

we can �nd a point to decrease the objective value, we are making progress and

we won't get stuck. But how to decrease the objective?

Gradient descent

Not a single method, but a general framework.

Scheme:

1 Choose a starting point x1 ∈ Rn.

2 Suppose x1, . . . , xt are computed. Choose xt+1 as a linear combination of

xt and ∇f (xt).

3 Stop once a certain stopping criterion is met and output the last iterate.

If T is the total number of iterations, then the running time is O(T ·M(x)),

where M(x) is the time of each update.

• The update time M(x) cannot be optimized below a certain level.

• The main goal is to keep T as small as possible.

Why using the gradient? I

We only have local information about x ⇒ a reasonable idea is to pick a

direction which locally provides the largest drop in the function value.

Formally: Pick a unit vector u for which a `tiny' (δ) step in direction u

maximizes

f (x)− f (x + δu).

This leads to the optimization problem

max
∥u∥=1

[
lim

δ→0+

f (x)− f (x + δu)

δ

]
.

By the Taylor approximation of f , the limit is simply the directional derivative

of f at x in direction u, thus

max
∥u∥=1

[−⟨∇f (x), u⟩] .

Cauchy-Schwarz inequality

Cauchy-Schwarz inequality

For all x , y ∈ Rn, we have ⟨x , y⟩ ⩽ ∥x∥∥y∥.

Proof sketch.
Assuming x , y ∈ R2, we know that ⟨x , y⟩ = ∥x∥∥y∥ cos θ, where θ is the angle

between x and y . In higher dimensions, intuitively, the two vectors x and y form

together a subspace of dimension at most 2 that can be thought of as R2.

Why using the gradient? II

Recall: max∥u∥=1 [−⟨∇f (x), u⟩]
From the Cauchy-Schwarz inequality, we get

−⟨∇f (x), u⟩ ⩽ ∥∇f (x)∥∥u∥ = ∥∇f (x)∥,
and equality holds if u = − ∇f (x)

∥∇f (x)∥ .

⇒ Moving in the direction of the negative gradient is an instantaneously good

strategy - called the gradient �ow:
dx

dt
= − ∇f (x)

∥∇f (x)∥ .

Question: How to implement the strategy on a computer?

Natural discretization:

xt+1 = xt − α
∇f (xt)

∥∇f (xt)∥
,

where α > 0 is the `step length'. More generally,

xt+1 = xt − η∇f (xt),

where η > 0 is a parameter.

Assumptions

Step length: Ideally, we would like to take big steps. This results in smaller

number of iterations, but the function can change dramatically, leading to a

large error.

Solution: Assumptions on certain regularity parameters.

1 Lipschitz gradient. For every x , y ∈ Rn we have

∥∇f (x)−∇f (y)∥ ⩽ L∥x − y∥.
This is also sometimes referred to as L-smoothness of f .

⇒ Around x , the gradient changes in a controlled manner; we can take

larger step size.

2 Bounded gradient. For every x ∈ Rn we have

∥∇f (x)∥ ⩽ G .

This implies that f is G -Lipschitz.

⇒ The function can go towards in�nity in a controlled manner.

3 Good initial point. A point x1 is provided such that ∥x1 − x∗∥ ⩽ D,

where x∗ is some optimal solution.

Lipschitz gradient

Thm.

Given a �rst-order oracle access to an L-Lipschitz convex function f : Rn → R,
an initial point x1 ∈ Rn with ∥x1 − x∗∥ ⩽ D, and ε > 0, there is an algorithm

the outputs a point x ∈ Rn such that f (x) ⩽ f (x∗) + ε. The algorithm makes

T = O
(

LD2

ε

)
queries to the oracle and performs O(nT) arithmetic operations.

Algorithm

1 Let T = O(LD
2

ε).

2 Let η = 1
L .

3 Repeat for t = 1, . . . ,T − 1:

• xt+1 = xt − η∇f (xt).

4 Output xT .

Lipschitz gradient

Lower bound

Consider any algorithm for solving the convex unconstrained minimization prob-

lem minx∈Rn f (x) in the �rst-order model, when f has Lipschitz gradient with

constant L and the initial point x1 ∈ Rn satis�es ∥x1 − x∗∥ ⩽ D. There is a

function f such that

min
1⩽i⩽T

f (xi)− min
x∈Rn

f (x) ⩾
LD2

T 2
.

⇒ The theorem translates to a lower bound of Ω(1√
ε
) iterations to reach an

ε-optimal solution.

Is there a method which matches the 1√
ε
iterations bound? Yes!

Nesterov's accelerated gradient descent algorithm

Under the same assumptions, there is an algorithm the outputs a point x ∈ Rn

such that f (x) ⩽ f (x∗) + ε, makes T = O(
√
LD√
ε
) queries to the oracle, and

performs O(nT) arithmetic operations.

Constrained setting - projection

Objective: minx∈K f (x) (constrained setting)

⇒ The next iterate xt+1 might fall outside of K , hence we need to project it

back onto K , that is,

xt+1 = projK (xt − ηt · ∇f (xt)).

Di�culty: The projection may or may not be computationally expensive to

perform.

Thm.

Given a �rst-order oracle access to a convex function f : Rn → R with an L-

Lipschitz gradient, oracle access to a projection operator projK onto a convex

set K ⊆ Rn, an initial point x1 ∈ Rn with ∥x − x∗∥ ⩽ D, and ε > 0, there

is an algorithm the outputs a point x ∈ Rn such that f (x) ⩽ f (x∗) + ε. The

algorithm makes T = O
(

LD2

ε

)
queries to the �rst-order and the projection

oracles and performs O(nT) arithmetic operations.

Regularizers I

The Lipschitz gradient algorithm leaves out convex functions which are

non-di�erentiable, such as f (x) =
∑n

i=1 |xi | or f (x) = max{|x1|, . . . , |xn|}.
Let's reconsider how to choose the next point to converge quickly?

Obvious choice: x t+1 = argminx∈K f (x)

⇒ Coverges quickly to x∗ (in one step). Yet, it is not very helpful as x t+1 is

hard to compute.

Idea: Construct a function f t that approximates f in a certain sense and is

easy to minimize. The update rule becomes

x t+1 = argminx∈K f t(x).

⇒ Intuitively, if f t becomes more and more accurate, the sequence of iterates

should converge to x∗.

Regularizers II

Example

The Lipschitz gradient algorithm corresponds to the choice

f t(x) = f (x t) + ⟨∇f (x t), x − x t⟩+ L

2
∥x − x t∥2.

Indeed, ∇f t(x) = ∇f (x t) + L(x − x t) = 0 if and only if x = x t − 1
L∇f (x t).

In general, when the function is not di�erentiable, one can try to use the �rst

order approximation of f at x t , that is,

f t(x) = f (x t) + ⟨∇f (x t), x − x t⟩.

Then f t(x) ⩽ f (x) and f t gives a descent approximation of f in a small

neighborhood x t . The resulting updating rule will be

x t+1 = argminx∈K{f (x t) + ⟨∇f (x t), x − x t⟩}.

Regularizers III

Example

K = [−1, 1] amd f (x) = x2

⇒ The algorithm is way too aggressive as it

jumps between −1 and +1 inde�nitely.

[Even worse: if K is ubounded, then the mini-

mum is not attained at any �nite point!]

b

b

b

b

1−1

Idea: Add a term involving a distance function D : K × K → R that does not

allow x t+1 to land far away from x t . More precisely,

x t+1 = argminx∈K{D(x , x t) + η(f (x t) + ⟨∇f (x t), x − x t⟩)}
= argminx∈K{D(x , x t) + η⟨∇f (x t), x⟩}.

Remark: By picking large η, the signi�cance of the regularizer is reduced. By

picking small η, we force x t+1 to stay close to x t .

Kullback-Leibler divergence

Objective: minp∈∆n f (p), where ∆n = {p ∈ [0, 1]n :
∑n

i=1 pi = 1} is the

probability simplex.

Recall that

pt+1 = argminp∈∆n
{D(p, pt) + η⟨∇f (pt), p⟩}.

For two probability distributions , p, q ∈ ∆n, their Kullback-Leibler divergence

is de�ned as

DKL(p, q) = −
n∑

i=1

pi log
qi
pi
.

Remarks:

• DKL is not symmetric

• DKL(p, q) ⩾ 0

Lemma

Consider any vector q ∈ Rn
⩾0 and a vector g ∈ Rn. De�ne w∗

i = qie
−ηgi for

i = 1, . . . , n. Then argminp∈∆n
{DKL(p, q) + η⟨g , p⟩} = w∗

∥w∗∥1 .

Exponential gradient descent

Algorithm

1 Initialize p1 = 1
n1 (uniform distribution).

2 Repeat for t = 1, . . . ,T :

• Obtain g t = ∇f (pt).
• Let w t+1 ∈ Rn and pt+1 ∈ ∆n be de�ned as

w t+1
i = pt

i e
−ηg ti and pt+1

i =
w t+1

i∑n
j=1 w

t+1
j

.

3 Output p̄ = 1
T

∑T
t=1 p

t .

Thm.

Suppose that f : ∆n → R is a convex function which satis�es ∥∇f (p)∥ ⩽ G

for all p ∈ ∆n. If we set η = Θ
(√

log n√
TG

)
, then after T = Ω

(
G2 log n

ε2

)
iterations

of the algorithm, the point p̄ = 1
T

∑T
t=1 p

t satis�es f (p̄) ⩽ f (p∗) + ε.

Multiplicative weights update

The analysis of the exponential gradient descent algorithm reveals that one can

work with arbitrary vectors g t instead of the gradients of f .

Algorithm

1 Initialize p1 = 1
n1 (uniform distribution).

2 Repeat for t = 1, . . . ,T :

• Obtain g t from the oracle.

• Let w t+1 ∈ Rn and pt+1 ∈ ∆n be de�ned as

w t+1
i = pt

i e
−ηg ti and pt+1

i =
w t+1

i∑n
j=1 w

t+1
j

.

3 Output p1, . . . , pT ∈ ∆n

Thm.

Assume that ∥g t∥ ⩽ G for t = 1, . . . ,T . If we set η = Θ
(√

log n√
TG

)
,

then after T = Θ
(

G2 log n
ε2

)
iterations we have 1

T

∑T
i=1⟨g t , pt⟩ ⩽

minp∈∆n

1
T

∑T
i=1⟨g t , p⟩+ ε.

Regularizers revisited

Update rule: x t+1 = argminx∈K{D(x , x t) + η⟨∇f (x t), x⟩}.
The Bregman divergence of a function f : K → R at u,w ∈ K is de�ned to be

Df (u,w) = f (u)− (f (w) + ⟨∇f (w), u − w⟩).

Remark: The Kullback-Leibler divergence is the Bregman divergence

corresponding to the function H(x) =
∑n

i=1 xi log xi − xi .

For any convex regularizer R : Rn → R, by denoting the gradient at step t by

g t , we have

x t+1 = argminx∈K{DR(x , x
t) + η⟨g t , x⟩}

= argminx∈K{η⟨g t , x⟩+ R(x)− R(x t)− ⟨∇R(x t), x − x t⟩}
= argminx∈K{R(x)− ⟨∇R(x t)− ηg t , x⟩}.

Suppose that there exists w t+1 such that ∇R(w t+1) = ∇R(x t)− ηg t . Then

x t+1 = argminx∈K{R(x)− ⟨∇R(x t)− ηg t , x⟩}
= argminx∈K{R(x)− R(w t+1) + ⟨∇R(w t+1), x⟩}
= argminx∈K{DR(x ,w

t+1)}. (DR -projection of w t+1 onto K)

Mirror descent I

Assume that the regularizer R : Ω → Rn has a domain Ω which contains K as a

subset. Furthermore, assume that ∇R : Ω → Rn is a bijection (mirror map).

Algorithm

Input: 1st-order oracle access to convex f : K → R, oracle access to ∇R and

its inverse, projection operator w.r.t. DR(·, ·), initial point x1 ∈ K , parameter

η > 0, integer T > 0.

1 Repeat for t = 1, . . . ,T :

• Obtain g t = ∇f (pt).
• Let w t+1 be such that ∇R(w t+1) = ∇R(x t)− η∇f (x t).
• Set x t+1 = argminx∈K DR(x ,w

t+1).

2 Output x̄ = 1
T

∑T
t=1 x

t .

Remarks:

• The mirror map ∇R and its inverse should be e�ciently computable.

• The projection step argminx∈K DR(x ,w
t+1) should be computationally

easy to perform.

Mirror descent II

Thm.

Let f : K → R and R : Ω → R be convex functions with K ⊆ Ω ⊆ Rn.

Suppose that the gradient map ∇R : Ω → Rn is a bijection, ∥∇f (x)∥ ⩽ G for

x ∈ K (bounded gradient), and that DR(x , y) ⩾ σ
2 ∥x − y∥∗2 for x ∈ Ω (R is

σ-strongly convex w.r.t. dual norm ∥ · ∥∗).
If we set η = Θ

(√
σDR (x∗,x1)√

TG

)
, then after T = Θ

(
G2DR (x

∗,x1

σε2

)
iterations the

point x̄ satis�es f (x̄) ⩽ f (x∗) + ε.

Reading assignment

N. Vishnoi. Algorithms for convex optimization.

• Chapter 6

• Chapter 7

L.C. Lau. Convexity and optimization.

• Lecture 7

https://convex-optimization.github.io/
https://cs.uwaterloo.ca/~lapchi/cs798/notes.html

Exercises

1 Let G = (V ,E) be an undirected graph and s, t ∈ V . Consider the following problem:

min
∑
uv∈E

|xu − xv |

s.t. xs − xt = 1

This is not a linear program in this form. Rewrite it as a linear program. (1pt)

2 Let us consider the following functions:

f1(w1,w2) =
1

2
w2

1 +
7

2
w2

2 , and

f2(w1,w2) =100(w2 − w2

1)
2 + (1− w1)

2 (Rosenbrock's function).

a Calculate the gradients of the functions. (2pts)

b Are these function convex? (2pts)

c Determine the global minimum of the functions. (2pts)

d Choose a starting point w = (w1,w2) within distance 5 from an optimal

solution, and perform one step of the Gradient descent algorithm. (2pts)

3 Given a convex, di�erentiable function F : K → R over a convex subset K of Rn, the

Bergman divergence of x , y ∈ K is de�ned as

DF (x , y) = F (x)− F (y)− ⟨∇F (y), x − y⟩.
Prove that DF (x , y) ⩾ 0. (1pt)

Newton's method

Finding a root of a univariate function I

Input: A su�ciently di�erentiable function g : R → R.

Goal: Find one of its roots, that is, a point r s.t. g(r) = 0.

Setup: Zeroth- and �rst-order access to g and point x0 that is su�ciently close

to somme root of g .

Idea: Given a point x , consider the tangent through

(x , g(x)), and let x ′ be the intersection with the x-

axis.

x ′ = x − g(x)

g ′(x)

⇒ We hope to make progress in reaching a zero of g .

Finding a root of a univariate function II

Algorithm

1 Start with x0 ∈ R.

2 For t = 0, 1, . . . , let

xt+1 := xt −
g(xt)

g ′(xt)

Remarks:

• The method requires the di�erentiability of g .

• The convergence heavily depends on the starting point.

Example: Minimize f (x) := ax − log x over all positive x > 0.

Solution: Take g(x) := f ′(x), and �nd a root of g . As f is convex, the root of

g is an optimizer for f . We have

g(x) := f ′(x) = a− 1

x
.

Example I

While the solution is obviously 1
a , let us apply Newton's method.

Reason 1: To illustrate the method.

Reason 2: Early computers used Newton's method to compute the reciprocal

as it only involved addition, subtraction, and multiplication.

We have

xt+1 = xt −
g(xt)

g ′(xt)
= 2xt − ax2t .

De�ne et := 1− axt . Then

et+1 = e2t .

• If |e0| < 1, then et → 0.

• If |e0| = 1, then et = 1 for t ⩾ 1.

• If |e0| > 1, then et → ∞.

⇒
• If 0 < x0 <

2
a , then xt → 1

a .

• If x0 =
2
a , then xt = 0 for t ⩾ 1.

• If x0 >
2
a , then xt → −∞.

Example II

• If 0 < x0 <
2
a , then xt → 1

a .

• If x0 =
2
a , then xt = 0 for t ⩾ 1.

• If x0 >
2
a , then xt → −∞.

b

b

b

b

b

bb

x0 x1 x2 x3

⇒ The right starting point has a crucial impact on whether the algorithm

succeeds or fails.

Note: By modifying the function g , e.g. g(x) := x − 1
a , we get a di�erent

algorithm to compute 1
a . However, some of them might not make sense

(xt+1 = xt − g(xt)
g ′(xt)

= 1
a), or might not be e�cient.

Convergence I

Recall: The distance et = 1− axt = a(1a − xt) was squared at every iteration in

the example.

Question: Do we get quadratic convergence in general? YES!

Thm.

Suppose g : R → R is twice di�erentiable and its second derivative is contin-

uous, r ∈ R is a root of g , x0 ∈ R is a starting point, and x1 = x0 − g(x0)
g ′(x0)

.

Then |x1 − r | ⩽ M|x0 − r |2, where M = supξ∈(r ,x0)

∣∣∣ g ′′(ξ)
2g ′(x0)

∣∣∣.
The proof relies on the Mean value theorem, stating that if h : R → R is a

continuous function on the closed interval [a, b] and di�erentiable on the open

interval (a, b), then there exists c ∈ (a, b) s.t.

h′(c) =
h(b)− h(a)

b − a
.

Convergence II

Proof of the theorem.

By considering the second-order Taylor approximation of g around x0, we have

g(r) = g(x0) + (r − x0)g
′(x0) +

1

2
(r − x0)

2g ′′(ξ)

for some ξ ∈ (r , x0).

From the de�nition of x1, we know that g(x0) = g ′(x0)(x0 − x1). Furthermore,

g(r) = 0 as r is a root, hence

0 = g ′(x0)(x0 − x1) + (r − x0)g
′(x0) +

1

2
(r − x0)

2g ′′(ξ).

This implies

g ′(x0)(x1 − r) =
1

2
(r − x0)

2g ′′(ξ).

Therefore

|x1 − r | =
∣∣∣∣ g ′′(ξ)
2g ′(x0)

∣∣∣∣ |x0 − r |2 ⩽ M|x0 − r |2,

where M is as stated in the theorem.

Convergence III

Assuming M is a small constant (say M ⩽ 1, and this holds throughout the

procedure) and |x0 − r | < 1
2 , the theorem implies quadratically fast convergence

of xt to r .

Indeed, after t steps we have

|xt − r | ⩽ |x0 − r |2t ⩽ 2−2t .

⇒ If t ≈ log log 1
ε , then |xt − r | ⩽ ε.

Summary: Newton's method is very e�cient!

See the Newton-Raphson method on GeoGebra!

https://www.geogebra.org/m/DGFGBJyU

Multivariate functions

Input: A su�ciently di�erentiable function g : Rn → Rn.

Goal: Find one of its roots, that is, a point r s.t. g(r) = 0.

[Be careful: here 0 denotes the all-zero vector.]

Setup: Zeroth- and �rst-order access to g and point x0 that is su�ciently close

to some root of g .

Original idea: Given a point x , de�ne

x ′ = x − g(x)

g ′(x)

⇒ Now g(x) is a vector while g ′(x) is the Jacobian matrix of g at x , i.e.

Jg (x) is the matrix of partial derivatives[
∂gi
∂xj

(x)

]
1⩽i,j⩽n

Hence the update rule becomes

xt+1 := xt − Jg (xt)
−1g(xt).

Newton's method for unconstrained optimization

What is the connection between convex programs and Newton's method?

Key observation: Minimizing a di�erentiable convex function in the

unconstrained setting is equivalent to �nding a root of its derivative.

Input: Su�ciently di�erentiable convex function f .

Goal: Find x∗ := argminx∈Rn f (x).

Recall:

• ∇f is a function from Rn to Rn.

• The Jacobian J∇f is the Hessian ∇2f .

⇒ The update rule is

xt+1 := xt − (∇2f (xt))
−1∇f (xt).

For ease of notation, we deine the Newton step at x to be

n(x) := −(∇2f (xt))
−1∇f (xt).

Hence xt+1 := xt + n(xt).

Newton's method as a second-order method

Suppose we would like to �nd a global minimum of f and x0 is our current

approximate solution. Let

f̃ (x) := f (x0) + ⟨x − x0,∇f (x0)⟩+
1

2
(x − x0)

T∇2f (x0)(x − x0).

Idea: Set the next point to be the minimizer of f̃ .

[Roughly, we hope that f̃ approximates f locally, and so the new point should

be an even better approximation to x∗.]

We have to �nd x0 := argminx∈Rn f̃ (x). Assuming that f is strictly convex (and

so ∇2f (x0) is invertible), this is equivalent to solving ∇f̃ (x) = 0, that is,

∇f (x0) +∇2f (x0)(x − x0) = 0,

leading to x1 = x0 − (∇2f (x0))
−1∇f (x0) = x0 + n(x0).

⇒ We recovered Newton's method!

Consequence: When applied to strictly convex quadratic functions, i.e. of the

form h(x) = xTMx + bT x for M ≻ 0, then after one iteration we land in the

unique minimizer.

Newton's method vs. gradient descent

Is Newton's method a �better� algorithm?

Pros: It uses the Hessian to perform the iterations, hence it is more powerful.

Cons: One iteration is now more costly, as a second-order oracle is needed.

More precisely, to compute xt+1, we need to solve the following system:(
∇2f (xt)

)
x = ∇f (xt).

• In general, this takes O(n3) time using Gaussian elimination, or O(nω)

using fast matrix multiplication.

• If the Hessian has a special form, e.g. it is Laplacian, then there are

nearly-linear time Laplacian solvers.

Newton-Eucledian condition

NE condition

Let f : Rn → R be a function, x∗ be one of its minimizers, x0 be arbitrary. We

say that the NE(M) condition is satis�ed for M > 0 if there exists an

Euclidean ball B(x∗,R) of radius R containing x0 and constants h, L > 0 such

that M ⩾ L
2h and

• for every x ∈ B(x∗,R), we have ∥∇2f (x)−1∥ ⩽ 1
h ,

• for every x , y ∈ B(x∗,R), we have ∥∇2f (x)−∇2f (y)∥ ⩽ L∥x − y∥2.

Here the norm of a matrix is the so-called spectral norm, de�ned as

∥A∥ := sup
x∈Rn

∥Ax∥2
∥x∥2

.

Thm.

Let f : Rn → R and x∗ be one of its minimizers. Let x0 be arbitrary and de�ne

x1 := x0 + n(x0). If the NE(M) condition is satis�ed, then

∥x1 − x∗∥2 ⩽ M∥x0 − x∗∥22.

Problem with the convergence I

Fact: The theorem is stated with respect to quantities based on Euclidean

norm ∥ · ∥2, which makes it hard to apply in many cases.

Example: For K1,K2 > 0 (large constants), consider

f (x1, x2) := − log(K1 − x1)− log(K1 + x1)− log

(
1

K2
− x2

)
− log

(
1

K2
+ x2

)
.

Problem with the convergence II

Now the Hessian of f is

∇2f (x) =

(
1

(K1−x1)2
+ 1

(K1+x1)2
0

0 1
(1

K2
−x2)2

+ 1
(1

K2
+x2)2

)
⇒ It can be veri�ed that M, which determines the quadratic convergence of

Newton's method, is at least Ω(K 2
1K

2
2). Therefore, even when the initial point

is close to the optimal solution x∗, the guarantee in the theorem is too weak to

imply that in one step the distance drops.

However, Newton's method does in fact converge rapidly to x∗!

Local norm I

Let f : Rn → R be a strictly convex function, i.e., the Hessian ∇2f (x) is

positive de�nite for every x ∈ Rn. We de�ne the local inner product at every

point x as

⟨u, v⟩x := uT∇2f (x)v for u, v ∈ Rn.

The corresponding local norm is

∥u∥x :=
√

uT∇2f (x)u for u ∈ Rn.

Recall: When deriving the gradient descent algorithm, we picked the direction

of steepest descent which is a solution to the following problem:

argmax
∥u∥=1

(−⟨∇f (x), u⟩).

The optimal direction w.r.t. the Euclidean norm ∥ · ∥ = ∥ · ∥2 is in the direction

−∇f (x).

Local norm II

Idea: What if instead maximize over all u of local norm 1? That is,

argmax
∥u∥x=1

(−⟨∇f (x), u⟩) = argmax
uT∇2f (x)u=1

(−⟨∇f (x), u⟩).

[We would like to capture the �shape� of f around x with our choice of the

norm, and our best guess is the quadratic term given by the Hessian.]

Using Cauchy-Schwarcz, the optimal solution is in the direction

−∇2f (x)−1∇f (x),

which is exactly the Newton step!

Indeed, set v := ∇2f (x)−1∇f (x), and observe that

−⟨∇f (x), u⟩ = −
〈
∇2f (x)

1

2 v ,∇2f (x)
1

2 u
〉

⩽
√
vT∇2f (x)v

√
uT∇2f (x)u

= ∥v∥x∥u∥x ,
and equality holds if and only if ∇2f (x)

1

2 u = −∇2f (x)
1

2 v . This is the same as

u = −v = −∇2f (x)−1∇f (x).

Conclusion

Newton's method can be interpreted as a steepest descent algorithm, where

the Newton step is the direction of steepest descent with respect to the local

norm.

Reading assignment

N. Vishnoi. Algorithms for convex optimization.

• Chapter 9

L.C. Lau. Convexity and optimization.

• Lecture 12

https://convex-optimization.github.io/
https://cs.uwaterloo.ca/~lapchi/cs798/notes.html

Submodular functions

Motivation

Semantic segmentation:

Question: How can we map pixels to objects?

Motivation

Document summarization:

Question: How can we select representative sentences?

Motivation

Sensor placement:

Question: How to place the sensors optimally?

Motivation

Sensor placement:

Obs. Some placements are more e�ective than others.

Motivation

Sensor placement:

Obs. Adding a new sensor has �more value� in the �rst case than in the second

case.

Discrete optimization

Setup: Given a set F of feasible solutions and a function f : F → R, solve
max{f (X) : X ∈ F}
min{f (X) : X ∈ F}

Arbitrary set functions are hopelessly di�cult to optimize...for 100 items, we

should check 2100 sets!

Goal: Find su�cient conditions that make the problem tractable.

Recall: In the continuous case, f : Rn → R can be minimized if f is convex,

and maximized if f is concave.

⇒ Is it possible to �nd discrete counterparts?

Note: Many problems in real life applications assume a discrete setting,

therefore it would be crucial to provide e�cient algorithms.

Set functions

Let S be a set of size n. A set function is a function of the form f : 2S → R,
where 2S denotes the set of all subsets of S .

Given a set X ⊆ S and s ∈ S , we denote by

X + s := X ∪ {s},
X − s := X \ {s}.

The marginal value of s w.r.t. X is

f (s|X) = f (X + s)− f (X).

Further properties:

• Monotone: if X ⊆ Y ⊆ S , then f (X) ⩽ f (Y).

• Nonnegative: f (X) ⩾ 0 for X ⊆ S .

• Normalized: f (∅) = 0 (we will usually assume this throughout).

Modular functions

A set function f : 2S → R is modular if for all X ⊆ S we have

f (X) =
∑
s∈X

f (s).

Intuitively: Associate a weight ws with each s ∈ S , and set f (X) =
∑

s∈X ws .

⇒ Discrete analogue of linear functions.

Submodularity

A set function f : 2S → R is submodular if for all X ⊆ Y ⊆ S and s ∈ S \ Y
we have

f (s|X) ⩾ f (s|Y).

Intuitively: The gain is more from a new element if we start with a smaller set.

Example: f (new car|{bike}) ⩾ f (new car|{bike,car,private jet})
[The marginal value of an element exhibits diminishing marginal returns.]

Remarks:

• f is supermodular if −f is submodular

• f is modular if and only if it is both sub- and supermodular

Equivalent de�nition I

A set function f : 2S → R is submodular if and only if for all X ,Y ⊆ S we have

f (X) + f (Y) ⩾ f (X ∩ Y) + f (X ∪ Y).

Proof.
⇐ Let X ⊆ Y ⊆ S and s ∈ S \ Y . Then X ∪ Y = Y and X ∩ Y = X , hence

f (s|X) = f (X + s)− f (X) ⩾ f (Y + s)− f (Y) = f (s|Y).

⇒ Assume that f is submodular, and let X \ Y = {x1, . . . , xk}. Furthermore,

let Xi := {x1, . . . , xi} for i = 1, . . . , k . Then

f ((X ∩ Y) ∪ X1)− f (X ∩ Y) ⩾ f (Y ∪ X1)− f (Y)

f ((X ∩ Y) ∪ X2)− f ((X ∩ Y) ∪ X1) ⩾ f (Y ∪ X2)− f (Y ∪ X1)

...

f ((X ∩ Y) ∪ Xk})− f ((X ∩ Y) ∪ Xk−1) ⩾ f (Y ∪ Xk)− f (Y ∪ Xk−1})

f (X)− f (X ∩ Y) ⩾ f (X ∪ Y)− f (Y)

Equivalent de�nition II

A set function f : 2S → R is supermodular if and only if for all X ,Y ⊆ S we

have

f (X) + f (Y) ⩽ f (X ∩ Y) + f (X ∪ Y).

A set function f : 2S → R is modular if and only if for all X ,Y ⊆ S we have

f (X) + f (Y) = f (X ∩ Y) + f (X ∪ Y).

Remark: These functions play a crucial role in combinatorial optimization, and

also in machine learning.

Example I - Coverage

Coverage function. Assume that for s ∈ S , we are given a measurable set As .

Then

f (X) :=

∣∣∣∣∣⋃
s∈X

As

∣∣∣∣∣
is submodular.

A1

A2

A3

A4

Example II - Cuts in graphs

Cut function. Let G = (V ,E) be an undirected graph. Then f (X) := dG (X)

is submodular.

b

b

b
b

b

b

b

b

X

In- and out-degrees. Let D = (V ,A) be an directed graph. Then the

out-degree f (X) := d+
D (X) and the in-degree f (X) := d−

D (X) functions are

submodular.

b

b

b
b

b

b

b

b

X

Example III - Entropy

Entropy. Let (ξs)s∈S be random variables with �nite number of values in

(Xs)s∈S , respectively. For a set X = {s1, . . . , sk} ⊆ S , the joint entropy is

f (X) = −
∑

xs1∈Xs1

· · ·
∑

xsk∈Xsk

P(xs1 , . . . , xsk) log2 P(xs1 , . . . , xsk).

Then f is submodular.

Mutual information. i(X) := f (X) + f (S \ X)− f (S) is submodular.

Properties

1 Positive linear combinations: If f1, . . . , fk are submodular and λi ⩾ 0 for

i = 1, . . . , k , then
∑k

i=1 fi is submodular.

2 Re�ection: If f is submodular, then g(X) := f (S \ X) is submodular.

3 Restriction: If X ⊆ S and f is submodular, then g(Y) := f (X ∩ Y) is

submodular.

4 Conditioning: If X ⊆ S and f is submodular, then g(Y) := f (X ∪ Y) is

submodular.

5 Contraction: If X ⊆ S and f is submodular, then

g(Y) := f (X ∪ Y)− f (X) is submodular.

6 Maximum/minimum: If f and g are submodular, then max{f , g} and

min{f , g} are not necessarily submodular.

Submodularity and concavity

Given a set X ⊆ S , let 1X denote its charasteristic vector, that is,

(1X)s =

{
1 if s ∈ X ,

0 otherwise.

A set function f : 2S → R can be thought of as a function de�ned on {0, 1}S .
Recall: A function f : R → R is concave if f ′(x) is non-increasing in x .

Now: A function f : {0, 1}S → R is submodular if the �discrete derivative�

∂s f (x) = f (x + es)− f (x)

is non-increasing in x .

Furthermore: If a function g : R+ → R is concave, then f (X) := g(|X |) is
submodular.

Submodularity and convexity I

Let f : {0, 1}S → R be a set function. For a vector c ∈ RS , let s1, . . . , sn be an

ordering of the elements S such that cs1 ⩾ . . . ⩾ csn . Furthermore, let

Si := {s1, . . . , si} for i = 1, . . . , n. The Lovász-extension of f on c is

f̂ (c) : = csn f (Sn) +
n−1∑
i=1

(csi − csi+1)f (Si)

= cs1 f (S1) +
n∑

i=2

csi (f (Si)− f (Si−1)

= cs1 f (S1) +
n∑

i=2

csi f (si |Si−1).

⇒ The sum of the marginal gains weighted by the components of c .

Submodularity and convexity II

• f̂ is an extension of f in the sense that f̂ (1X) = f (X) for X ⊆ S .

• f̂ is piecewise a�ne.

• f̂ is convex if and only if f is submodular.

• When restricted to [0, 1]S , f̂ attains its minimum at one of the vertices,

that is,

min
c∈[0,1]S

f̂ (c) = min
X⊆S

f (S).

Conclusion: Submodular functions share properties in common with both

convex and concave functions. So, can we minimize/maximize them?

Submodular minimization I

Input: A submodular function f : 2S → R.

Goal: Find argminX⊆S f (X).

By the properties of the Lovász extension, this is equivalent to �nding

argminx∈[0,1]n f̂ (x).

Thm.

The Lovász extension f̂ can be minimized using the Ellipsoid method in

O(n8 log2 n) time.

Remarks:

• O(n6) algorithm (Schrijver (2000), Iwata et al. (2001), Orlin (2009)).

• Faster algorithms in special cases (cuts, �ows).

Submodular minimization II

1 Symmetric submodular functions. The function f is symmetric if

f (X) = f (S \ X). In this case

2f (X) = f (X) + f (S \ X) ⩾ f (∅) + f (S) = 2f (∅) = 0,

hence the minimum is trivially attained at S .

⇒ Usually, we are interested in argmin∅̸=X⊂S f (X).

Queyranne, 1998

If f is symmetric, then there is a fully combinatorial algorithm for solving

argmin∅̸=X⊂S f (X) in O(n3) time.

2 Constrained setting. A simple constraint can make submodular

minimization hard, e.g., n1/2-hardness for minX⊆S,|X |⩾k f (S).

⇒ In such cases, one might be interested in �nding approximate solutions.

Example - Clustering

Input: A set S .

Goal: Find a partition into k clusters S1, . . . ,Sk such that

g(S1, . . . ,Sk) =
k∑

i=1

f (Si)

is minimized, where f is a submodular function (e.g. entropy or cut function).

Observation: For k = 2, the function g(X) = f (X) + f (S \ X) is symmetric

and submodular, thus Queyranne's algorithm applies.

1 Let P1 = {S}.
2 For i = 1, . . . , k − 1:

(a) For each Sj ∈ Pi , let P j
i be a

partition obtained by splitting

Sj using Queyranne's

algorithm.

(b) Set Pi+1 = argmin f (P j
i).

Thm.

If P is the partition provided by the

greedy splitting algorithm, then

f (P ⩽

(
2− 2

k

)
f (Popt).

Submodular maximization

The maximization of submodular functions naturally comes up in applications.

The function is often assumed to be monotone, that is, f (X) ⩽ f (Y) for

X ⊆ Y ⊆ S .

⇒ When f is monotone, then the maximum is clearly attained on S .

Hence:

• Non-monotone submodular maximization (e.g. Max Cut).

• Monotone submodular maximization with constraints (e.g.

maxX⊆S,|X |⩽k f (X)).

Monotone submodular maximization

Greedy algorithm

1 Set S0 := ∅.
2 For i = 1, 2, . . . , k :

• Pick an element s maximizing f (s|Si−1).
• If the marginal value is non-negative, set Si := Si−1 + s.
• Otherwise stop.

Nemhauser, Wolsey, Fisher

The greedy algorithm gives a (1 − 1
e)-approximation for the problem

maxX⊆S,|X |⩽k f (X), where f is monotone submodular.

Remark:

• When instead of |X | ⩽ k a matroid constraint X ∈ I is given, then the

greedy algorithm gives a 1
2 -approximation.

Further approaches

1 Partial enumeration: Guess the �rst few elements, then run the greedy

algorithm.

2 Local search: Switch up to t elements if the function value is decreased.

• 1/3-approximation for unconstrained (non-monotone) maximization

• Further results for matroid constraints.

Reading assignment

submodularity.org

http://submodularity.org

Exercises

1 Verify that the in-degree function of a directed graph is submodular. (2pts)

2 Prove the following statements. (4pts)

(a) The non-negative linear combination of submodular functions is submodular.

(b) The re�ection of a submodular function is submodular.

(c) The restriction of a submodular function is submodular.

(d) The contraction of a submodular function is submodular.

3 Provide examples showing that the maximum/minimum of two submodular functions

are not necessarily submodular. (2pts)

4 Give a 2-approximation for the Max Cut problem in undirected graphs, where the goal is

to �nd a set X with maximum degree. (2pts) [Hint: try to �nd a greedy approach.]

Integer programming

Example revisited

Example:

x1 + 2 · x2 ⩽ 8

2 · x1 + x2 ⩽ 6

x1, x2 ⩾ 0

bb b

b b b

b b b

b b b b

b

bb

b

b

b b b b

b b b

b

b b b b b b

b

b

b

b

b

b

x1

x2

Example revisited

Example:

x1 + 2 · x2 ⩽ 8

2 · x1 + x2 ⩽ 6

x1, x2 ⩾ 0

x1, x2 ∈ Z
bb b

b b b

b b b

b b b b

b

bb

b

b

b b b b

b b b

b

b b b b b b

b

b

b

b

b

b

x1

x2

Example revisited

Example:

x1 + 2 · x2 ⩽ 8

2 · x1 + x2 ⩽ 6

x1, x2 ⩾ 0

x1, x2 ∈ Z
bb b

b b b

b b b

b b b b

b

bb

b

b

b b b b

b b b

b

b b b b b b

b

b

b

b

b

x1

x2
x1 + x2 = 7

Example revisited

Example:

x1 + 2 · x2 ⩽ 8

2 · x1 + x2 ⩽ 6

x1, x2 ⩾ 0

x1, x2 ∈ Z
bb b

b b b

b b b

b b b b

b

bb

b

b

b b b b

b b b

b

b b b b b b

b

b

b

b

b

x1

x2
x1 + x2 = 6

Another example

Example:

x1 + 10 · x2 ⩽ 10

x1 − 10 · x2 ⩽ 0

x1, x2 ⩾ 0

max{x1}
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

bb bb bb bb bb bbb

x1

x2

The fractional optimum can be far from the integer one.

Another example

Example:

x1 + 10 · x2 ⩽ 10

x1 − 10 · x2 ⩽ 0

x1, x2 ⩾ 0

max{x1}
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

bb bb bb bb bb bbb

x1

x2

b

The fractional optimum can be far from the integer one.

Another example

Example:

x1 + 10 · x2 ⩽ 10

x1 − 10 · x2 ⩽ 0

x1, x2 ⩾ 0

max{x1}
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

bb bb bb bb bb bbb

x1

x2

b
b

b

The fractional optimum can be far from the integer one.

Another example

Example:

x1 + 10 · x2 ⩽ 10

x1 − 10 · x2 ⩽ 0

x1, x2 ⩾ 0

max{x1}
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

bb bb bb bb bb bbb

x1

x2

b
b

b

The fractional optimum can be far from the integer one.

Approaches

Bad news: integer programming is NP-complete

Good news: there exist e�cient algorithms

• totally unimodular matrices

- every square submatrix has determinant 0, +1 or -1

• cutting plane methods

- adding further inequalities that separate the actual optimum from the

convex hull of the true feasible set

• branch and bound methods

- systematically enumerating the candidate solutions, forming a rooted tree

• rounding methods (threshold rounding, iterative rounding)

- rounding the coordinates of an optimal fractional solution

• heuristic methods (tabu search, hill climbing, simulated annealing, ant

colony optimization, etc)

- some would call these `voodoo'...

Approaches

Bad news: integer programming is NP-complete

Good news: there exist e�cient algorithms

• totally unimodular matrices

- every square submatrix has determinant 0, +1 or -1

• cutting plane methods

- adding further inequalities that separate the actual optimum from the

convex hull of the true feasible set

• branch and bound methods

- systematically enumerating the candidate solutions, forming a rooted tree

• rounding methods (threshold rounding, iterative rounding)

- rounding the coordinates of an optimal fractional solution

• heuristic methods (tabu search, hill climbing, simulated annealing, ant

colony optimization, etc)

- some would call these `voodoo'...

Branch and bound I

min c(x)

s.t. x ∈ F

Here F is the set of integer feasible solutions to the problem.

Ideas:

• Partition F into subsets F1, . . . ,Fk , and solve the subproblems min c(x)

s.t. x ∈ Fi . [May be as di�cult as the original one, hence split into further

subproblems - branching part.]

• Compute lower bounds b(Fi) for the subproblems. [A lower bound might

be easy to obtain, e.g. LP relaxation - bounding part.]

• Mainatin an upper bound U on the optimal cost. [E.g. the cost of the best

feasible solution thus far.]

Key observation: If b(Fi) ⩾ U, then the subproblem need not be considered

further.

Branch and bound II

Algorithm (general step):

1 Select an active subproblem Fi .

2 If the subproblem is infeasibe, delete it;

otherwise compute b(Fi).

• If b(Fi) ⩾ U, delete the subproblem.

• If b(Fi) < U, either determine an

optimal solution for Fi , or break it into

further (active) subproblems.

F

F1 F2

F4F3

Remarks:

• Choosing the subproblem, e.g. BFS or DFS.

• Computing the lower bounds, e.g. LP relaxation.

• Breaking into subproblems.

Rounding methods

Given a minimization problem, an α-approximation algorithm provides a

solution of value at most α · OPT .

Integer program

min cT · x
A · x ⩽ b

x ∈ Zn

Naiv approach:

1. remove the integrality constraint,

2. solve the corresponding LP, and

3. round the entries of the solution to get

an integer solution.

Problems:

• the solution may not be feasible Maintain feasibility.

• the solution may not be optimal Approximation?

Analysing the solution

Optimization
Problem

(IP)

Fractional
Relaxation

(LP)
x∗ x̂

(integer)
relax solve round

P ∗ (fractional optimal x∗)

Pint (integer optimal xint)

P (integer x̂)

(a) = Approximation ratio between x̂ and xint .

(b) = Approximation ration between x̂ and x∗.

Analysing the solution

Optimization
Problem

(IP)

Fractional
Relaxation

(LP)
x∗ x̂

(integer)
relax solve round

P ∗ (fractional optimal x∗)

Pint (integer optimal xint)

P (integer x̂)

(a) = Approximation ratio between x̂ and xint .

(b) = Approximation ration between x̂ and x∗.

Analysing the solution

Optimization
Problem

(IP)

Fractional
Relaxation

(LP)
x∗ x̂

(integer)
relax solve round

P ∗ (fractional optimal x∗)

Pint (integer optimal xint)

P (integer x̂)

(a)

(a) = Approximation ratio between x̂ and xint .

(b) = Approximation ration between x̂ and x∗.

Analysing the solution

Optimization
Problem

(IP)

Fractional
Relaxation

(LP)
x∗ x̂

(integer)
relax solve round

P ∗ (fractional optimal x∗)

Pint (integer optimal xint)

P (integer x̂)

(a)

(b)

(a) = Approximation ratio between x̂ and xint .

(b) = Approximation ration between x̂ and x∗.

Vertex cover I

Problem

Find a minimum number of vertices covering every edge of a graph.

Simple algorithm:

Step 1. Take an inclusionwise max-

imal matching M.

Step 2. Consider the end vertices of

the matching edges.

Observation

This gives a 2-approximation.

• One of Karp's 21 NP-complete

problems.

• Moreover, it is APX-complete.

- No better than

1.3606-approx. unless P =

NP.

- No better than 2-approx.

assuming UGC.

Vertex cover I

Problem

Find a minimum number of vertices covering every edge of a graph.

Simple algorithm:

Step 1. Take an inclusionwise max-

imal matching M.

Step 2. Consider the end vertices of

the matching edges.

Observation

This gives a 2-approximation.

• One of Karp's 21 NP-complete

problems.

• Moreover, it is APX-complete.

- No better than

1.3606-approx. unless P =

NP.

- No better than 2-approx.

assuming UGC.

Vertex cover I

Problem

Find a minimum number of vertices covering every edge of a graph.

Simple algorithm:

Step 1. Take an inclusionwise max-

imal matching M.

Step 2. Consider the end vertices of

the matching edges.

Observation

This gives a 2-approximation.

• One of Karp's 21 NP-complete

problems.

• Moreover, it is APX-complete.

- No better than

1.3606-approx. unless P =

NP.

- No better than 2-approx.

assuming UGC.

Vertex cover II

IP formulation

min
∑
v∈V

xv

xu + xv ⩾ 1 for uv ∈ E

xv ∈ {0, 1} for v ∈ V

LP relaxation

min
∑
v∈V

xv

xu + xv ⩾ 1 for uv ∈ E

xv ⩾ 0 for v ∈ V

Step 1.

Take a fractional solution x∗.

Step 2.

De�ne

x̂v =

{
1 if x∗v ⩾ 1/2,

0 otherwise.

Proof.
Note that x̂ is integral, feasible, and x̂v ⩽ 2 · x∗v . Hence∑

v∈V

x̂v ⩽ 2 ·
∑
v∈V

x∗v ⩽ 2 · OPT .

Vertex cover II

IP formulation

min
∑
v∈V

xv

xu + xv ⩾ 1 for uv ∈ E

xv ∈ {0, 1} for v ∈ V

LP relaxation

min
∑
v∈V

xv

xu + xv ⩾ 1 for uv ∈ E

xv ⩾ 0 for v ∈ V

Step 1.

Take a fractional solution x∗.

Step 2.

De�ne

x̂v =

{
1 if x∗v ⩾ 1/2,

0 otherwise.

Proof.
Note that x̂ is integral, feasible, and x̂v ⩽ 2 · x∗v . Hence∑

v∈V

x̂v ⩽ 2 ·
∑
v∈V

x∗v ⩽ 2 · OPT .

Vertex cover II

IP formulation

min
∑
v∈V

xv

xu + xv ⩾ 1 for uv ∈ E

xv ∈ {0, 1} for v ∈ V

LP relaxation

min
∑
v∈V

xv

xu + xv ⩾ 1 for uv ∈ E

xv ⩾ 0 for v ∈ V

Step 1.

Take a fractional solution x∗.

Step 2.

De�ne

x̂v =

{
1 if x∗v ⩾ 1/2,

0 otherwise.

010.4

0.3

0.6

0.7

Proof.
Note that x̂ is integral, feasible, and x̂v ⩽ 2 · x∗v . Hence∑

v∈V

x̂v ⩽ 2 ·
∑
v∈V

x∗v ⩽ 2 · OPT .

Vertex cover II

IP formulation

min
∑
v∈V

xv

xu + xv ⩾ 1 for uv ∈ E

xv ∈ {0, 1} for v ∈ V

LP relaxation

min
∑
v∈V

xv

xu + xv ⩾ 1 for uv ∈ E

xv ⩾ 0 for v ∈ V

Step 1.

Take a fractional solution x∗.

Step 2.

De�ne

x̂v =

{
1 if x∗v ⩾ 1/2,

0 otherwise.

010.4

0.3

0.6

0.7

Proof.
Note that x̂ is integral, feasible, and x̂v ⩽ 2 · x∗v . Hence∑

v∈V

x̂v ⩽ 2 ·
∑
v∈V

x∗v ⩽ 2 · OPT .

Vertex cover II

IP formulation

min
∑
v∈V

xv

xu + xv ⩾ 1 for uv ∈ E

xv ∈ {0, 1} for v ∈ V

LP relaxation

min
∑
v∈V

xv

xu + xv ⩾ 1 for uv ∈ E

xv ⩾ 0 for v ∈ V

Step 1.

Take a fractional solution x∗.

Step 2.

De�ne

x̂v =

{
1 if x∗v ⩾ 1/2,

0 otherwise.

010.4

0.3

1

1

Proof.
Note that x̂ is integral, feasible, and x̂v ⩽ 2 · x∗v . Hence∑

v∈V

x̂v ⩽ 2 ·
∑
v∈V

x∗v ⩽ 2 · OPT .

Vertex cover II

IP formulation

min
∑
v∈V

xv

xu + xv ⩾ 1 for uv ∈ E

xv ∈ {0, 1} for v ∈ V

LP relaxation

min
∑
v∈V

xv

xu + xv ⩾ 1 for uv ∈ E

xv ⩾ 0 for v ∈ V

Step 1.

Take a fractional solution x∗.

Step 2.

De�ne

x̂v =

{
1 if x∗v ⩾ 1/2,

0 otherwise.

010

0

1

1

Proof.
Note that x̂ is integral, feasible, and x̂v ⩽ 2 · x∗v . Hence∑

v∈V

x̂v ⩽ 2 ·
∑
v∈V

x∗v ⩽ 2 · OPT .

Vertex cover II

IP formulation

min
∑
v∈V

xv

xu + xv ⩾ 1 for uv ∈ E

xv ∈ {0, 1} for v ∈ V

LP relaxation

min
∑
v∈V

xv

xu + xv ⩾ 1 for uv ∈ E

xv ⩾ 0 for v ∈ V

Step 1.

Take a fractional solution x∗.

Step 2.

De�ne

x̂v =

{
1 if x∗v ⩾ 1/2,

0 otherwise.

010

0

1

1

Proof.
Note that x̂ is integral, feasible, and x̂v ⩽ 2 · x∗v . Hence∑

v∈V

x̂v ⩽ 2 ·
∑
v∈V

x∗v ⩽ 2 · OPT .

Vertex cover II

IP formulation

min
∑
v∈V

xv

xu + xv ⩾ 1 for uv ∈ E

xv ∈ {0, 1} for v ∈ V

LP relaxation

min
∑
v∈V

xv

xu + xv ⩾ 1 for uv ∈ E

xv ⩾ 0 for v ∈ V

Step 1.

Take a fractional solution x∗.

Step 2.

De�ne

x̂v =

{
1 if x∗v ⩾ 1/2,

0 otherwise.

010

0

1

1

Proof.
Note that x̂ is integral, feasible, and x̂v ⩽ 2 · x∗v . Hence∑

v∈V

x̂v ⩽ 2 ·
∑
v∈V

x∗v ⩽ 2 · OPT .

Vertex cover II

IP formulation

min
∑
v∈V

xv

xu + xv ⩾ 1 for uv ∈ E

xv ∈ {0, 1} for v ∈ V

LP relaxation

min
∑
v∈V

xv

xu + xv ⩾ 1 for uv ∈ E

xv ⩾ 0 for v ∈ V

Step 1.

Take a fractional solution x∗.

Step 2.

De�ne

x̂v =

{
1 if x∗v ⩾ 1/2,

0 otherwise.

010

0

1

1

Proof.
Note that x̂ is integral, feasible, and x̂v ⩽ 2 · x∗v . Hence∑

v∈V

x̂v ⩽ 2 ·
∑
v∈V

x∗v ⩽ 2 · OPT .

Threshold vs. iterative rounding

Threshold rounding

Optimization
Problem

(IP)

Fractional
Relaxation

(LP)
x∗ x̂

(integer)
relax solve round

Iterative rounding

Optimization
Problem

(IP)

Fractional
Relaxation

(LP)
x∗relax solve good part

bad part

x̂
(integer)

round

Residual problem

Integrality gap

P ∗ (fractional optimal x∗)

Pint (integer optimal xint)

P (integer x̂)

(a)

(b)

(a) = Approximation ratio between x̂ and xint .

(b) = Approximation ration between x̂ and x∗.

(c) = Integrality gap.

Integrality gap

P ∗ (fractional optimal x∗)

Pint (integer optimal xint)

P (integer x̂)

(a)

(b)
(c)

(a) = Approximation ratio between x̂ and xint .

(b) = Approximation ration between x̂ and x∗.

(c) = Integrality gap.

Heuristics - Local search

min c(x)

s.t. x ∈ F

Algorithm:

1 Start at some x ∈ F .

2 Evaluate c(x), and evaluate c(y) for �neighbors� y ∈ F of x .
• If c(y) < c(x), the move to y and repeat.

• Otherwise stop: local optimum has been found.

Remarks:

• Speci�cs are determined once �neighbors� are de�ned.

• Simplex method can be viewed as a special case.

• In practice: run repeatedly starting from di�erent initial solutions.

• Tradeo�: better solution is likely to obtained when considering larger

neighborhood, but this results in slower running time.

Heuristics - Simulated annealing I

Main drawback of local search: Only �nds local minimum.

Idea: Allow occasional moves to feasible solutions with higher costs.

Algorithm: For every state x ∈ F , a set N(x) ⊆ F of neighbors is given

(y ∈ N(x) ⇔ x ∈ N(y)).

1 Start from state x ∈ F .

2 Select a random neighbor y of x with probability qxy .

[Here qxy ⩾ 0 and
∑

y∈N(x) qxy = 1.]

3 Compute the di�erence c(y)− c(x).

• If c(y) ⩽ c(x), then move to state y .
• If c(y) > c(x), then move to state y with probability e−(c(y)−c(x))/T .

Remarks:

• When the temperature T is small - cost increases are unlikely.

• When T is large - the value of c(y)− c(x) has insigni�cant e�ect.

Heuristics - Simulated annealing II

The procedure evolves as a Markov chain. Let A =
∑

z∈F e−c(z)/T .

Steady-state distribution:

π(x) =
e−c(x)/T

A
,

⇒ π(x) falls exponentially with c(x). Hence if T is small, then almost all of

the steady-state probability is concentrated on states minimizing c(x) globally.

Should we set T to some very small constant then?

Drawback: the lower the value of T , the harder it is to escape from a local

minimum and the longer it takes to reach steady-state.

Instead: Let the temperature vary with time:

T (t) =
C

log t
.

Thm.

If C is su�ciently large, then limt→∞ P(x(t) is optimal) = 1.

Reading assignment

D. Bertsimas, J.N. Tsitsiklis. Introduction to linear optimization.

• Chapter 11, Sections 11.2, 11.6, and 11.7

Exercises

1 Consider the following integer programming problem.

maximize x1 + 2x2

subject to −3x1 + 4x2 ⩽ 4

3x1 + 2x2 ⩽ 11

2x1 − x2 ⩽ 5

x1, x2 ⩾ 0

x1, x2 integer

Use a �gure to answer the following questions.

a What is the optimal cost of the linear programming relaxation? What is the

optimal cost of the integer programming problem? (2pts)

b What is the convex hull of the set of all solutions to the integer

programming problem? (3pts)

Exercises

2 A company is manufacturing k di�erent products using m resources. The amounts of

available resources are given, together with the requirement of each of them for the

di�erent products. The selling price of the products are also known.

a Write up an IP model that aims at maximizing the total pro�t. (3pts)

b Adjust the model if starting the production of product i requires a cost of

si . (2pts)

	Linear programming
	Convexity
	Gradient descent, Mirror descent, and Multiplicative Weights Update
	Newton's method
	Submodular functions
	Integer programming

