Matroid theory

Date: 25 March 2024

From earlier weeks:

Exercise 1. As a further extension of the generalized submodular inequality, prove that $\hat{b}\left(c_{1}\right)+\hat{b}\left(c_{2}\right) \geq$ $\hat{b}\left(c_{1}+c_{2}\right)$ holds.

Exercise 2. Prove Rota's conjecture for strongly base orderable matroids.
Exercise 3. Prove Rota's conjecture for graphic matroids when each B_{i} is a star.
Exercise 4. Let $M=(S, r)$ be a matroid and $c: S \rightarrow \mathbb{Z}_{+}$be a weight function. For $X \subseteq S$, let $b_{c}(X)$ denote the maximum weight of an independent subset of X. Prove that b_{c} is submodular.

Exercise 5 (For this, matroid intersection is needed, so we will discuss it later.). Let $G=(V, E)$ be a graph and $c_{1}, \ldots, c_{q}: E \rightarrow \mathbb{R}$ be q cost functions defined on its edges. Give an algorithm that finds q pairwise edge-disjoint spanning trees T_{1}, \ldots, T_{q} minimizing $\sum_{i=1}^{q} c_{i}\left(T_{i}\right)$.

New set of exercises:

Exercise 6. Let $M=(S, r)$ be a matroid. For a set $Z \subseteq S$, let $\operatorname{cl}(Z)$ denote the closure of Z, that is, $\operatorname{cl}(Z)=\{s \in S \mid r(Z+s)=r(Z)\}$. Verify the following:
$(\mathrm{S} 1) ~ A \subseteq \operatorname{cl}(A)$,
(S2) $A \subseteq B \Rightarrow \operatorname{cl}(A) \subseteq \operatorname{cl}(B)$,
(S3) $\operatorname{cl}(\operatorname{cl}(A))=\operatorname{cl}(A)$,
(S4) if $y \notin \operatorname{cl}(A)$ and $y \in \operatorname{cl}(A+x)$, then $x \in \operatorname{cl}(A+y)$.
Exercise 7. Let $\sigma: 2^{S} \rightarrow 2^{S}$ be a function satisfying (S1)-(S4). Prove that there exists a unique matroid M such that the closure operator of M is exactly σ.

Exercise 8. Let S and T be disjoint sets, M_{1} be a matroid on S, and M_{2} be a matroid on $S \cup T$ in which S is a basis. Let $M=\left(M_{1}+M_{2}\right) / S$. Prove that $F \subseteq T$ is independent in M if and only if there exists $F_{1} \in M_{1}$ such that $S-F_{1}+F$ is a basis of M_{2}.

Exercise 9. Prove that the rank function of M in the previous exercise is $r(Z)=\min _{X \subseteq S}\left\{r_{1}(X)+r_{2}(Z \cup\right.$ $X)-|X|\}$.

Exercise 10. Let $b: 2^{S} \rightarrow \mathbb{Z}$ be a monotone increasing intersecting submodular function satisfying $b(\emptyset)=0$. Prove that b^{\vee} is also monotone increasing.

Exercise 11. Let $M=(S, \mathcal{F})$ be a laminar matroid. Find an intersecting submodular function $b: 2^{S} \rightarrow \mathbb{Z}$ such that $\mathcal{F}=\{I \subseteq S| | I \cap X \mid \leq b(X)$ for all $X \subseteq S\}$.

Exercise 12. Let $G=(V, E)$ be an undirected graph. Prove that G does not contain two trees (having at least one edge) spanning the same subset of vertices if and only if the rigidity matroid of G is the free matroid.

Exercise 13. Let $M_{1}=\left(S, r_{1}\right)$ and $M_{2}=\left(S, r_{2}\right)$ be two matroids on the same ground set. Show that the problem of finding a common basis of the two matroids can be reduced to the case when one of the matroids is a partition matroid with upper bound one on every partition class.

