Matroid theory

Date: 18 March 2024

From earlier weeks:

Exercise 1. As a further extension of the generalized submodular inequality, prove that $\hat{b}\left(c_{1}\right)+\hat{b}\left(c_{2}\right) \geq$ $\hat{b}\left(c_{1}+c_{2}\right)$ holds.

Exercise 2. Prove Rota's conjecture for strongly base orderable matroids.
Exercise 3. Prove Rota's conjecture for graphic matroids when each B_{i} is a star.
Exercise 4. Let $M=(S, r)$ be a matroid and $c: S \rightarrow \mathbb{Z}_{+}$be a weight function. For $X \subseteq S$, let $b_{c}(X)$ denote the maximum weight of an independent subset of X. Prove that b_{c} is submodular.

Exercise 5. Prove that transversal matroids are exactly the homomorphic images of partition matroids.

New set of exercises:

Exercise 6. Let $M=(S, \mathcal{F})$ be a matroid and k, ℓ be non-negative integers such that $k \geq \ell$. Consider the problem of paritioning S into k parts such that the union of any ℓ of them forms an independent set of M. Give characterizations for the existence of such a partition when $\ell=1, k-1$ and k.

Exercise 7. Let $G=(V, E)$ be a graph and $c_{1}, \ldots, c_{q}: E \rightarrow \mathbb{R}$ be q cost functions defined on its edges. Give an algorithm that finds q pairwise edge-disjoint spanning trees T_{1}, \ldots, T_{q} minimizing $\sum_{i=1}^{q} c_{i}\left(T_{i}\right)$.

Exercise 8. Let A and B be bases of the matroid $M=(S, r)$. Prove that for any partition $A=A_{1} \cup \cdots \cup A_{q}$ there exists a partition $B=B_{1} \cup \cdots \cup B_{q}$ such that $A-A_{i}+B_{i}$ is a basis for $i=1, \ldots, q$.

Exercise 9. Let A and B be bases of the matroid $M=(S, r)$. Prove that for any partition $A=A_{1} \cup A_{2}$ there exists a partition $B=B_{1} \cup B_{2}$ such that $A-A_{i}+B_{i}$ and $B-B_{i}+A_{i}$ are both bases for $i=1,2$.

Exercise 10. Assume that the ground set of the matroid M decomposes into two disjoint bases. Show that there are then an exponential number of such decompositions.

Exercise 11. Let $M=(S, \mathcal{B})$ be a matroid and $S_{1}, \ldots, S_{q} \subseteq S$. Give an algorithm for deciding if there exists a basis $B \in \mathcal{B}$ such that $B \cap S_{i}$ spans S_{i} for $i=1, \ldots, q$.

Exercise 12. Let M be a matroid. Prove that the truncation and elongation operations are dual to each other in the sense that the dual of a truncation of M forms an elongation of M^{*}. Similarly, the dual of an elongation of M forms a truncation of M^{*}.

Exercise 13. Let $D=(V, A)$ be an acyclic directed graph. Let $\mathcal{F}=\left\{F \subseteq A \mid d_{F}^{i n}(v) \leq 1\right.$ for every $\left.v \in V\right\}$. Prove that \mathcal{F} satisfies the independence axioms. What are the bases of the matroid thus obtained?

