Matroid theory Date: 4 March 2024

Exercise 1. Let M = (S, r) be a rank-*r* transversal matroid on *S*. Prove that there exists a bipartite graph G = (S, T; E) implying *M* such that |T| = r(S).

Conjecture 2 (Rota's basis conjecture). Let M be a matroid of rank n whose ground set is partitioned into n disjoint bases B_1, \ldots, B_n . Then there exist n pairwise disjoint transversal bases, where a basis is **transversal** if it intersects B_i for $i = 1, \ldots, n$.

Exercise 3. Let $B_1 \in B(M_1)$, $B_2 \in B(M_2)$ be disjoint bases of rank-*n* paving matroids on the same ground set, where $n \ge 3$. Let X be a two-element subset of B_1 . Then there is some $x \in X$, $y \in B_2$ such that $(B_1 - x) \cup y \in B(M_1)$ and $(B_2 - y) \cup x \in B(M_2)$.

Exercise 4. Let B_1, \ldots, B_n be disjoint sets of size $n \ge 3$, and let M_1, \ldots, M_n be rank-*n* paving matroids on $B_1 \cup \cdots \cup B_n$ such that B_i is a basis of M_i for each $i = 1, \ldots, n$. Then there is an ordering of the elements of B_1 as a_1, \ldots, a_n and a transversal $\{b_2, \ldots, b_n\}$ of (B_2, \ldots, B_n) such that for all $j = 2, \ldots, n$ the set $(B_1 - \{a_2, \ldots, a_j\}) \cup \{b_2, \ldots, b_j\}$ is a basis of M_1 , and $(B_j - b_j) \cup a_j$ is a basis of M_j .

Exercise 5. It is known that if S has size 9 and it decomposes into B_1, B_2 and B_3 where B_i is the basis of a paving matroid M_i of rank 3, then it decomposes into three transversals B'_1, B'_2 and B'_3 where B'_i is a basis of M_i . Using this and the previous two exercises, verify Rota's basis conjecture for paving matroids.

The **covering number** of a matroid M, denoted by $\beta(M)$, is the minimum number of independent sets needed to cover its ground set. Given matroids $M = (S, \mathcal{I})$ and $N = (S, \mathcal{J})$, we say that N is a **reduction** of M if $\mathcal{J} \subseteq \mathcal{I}$, that is, every independent set of N is independent in M as well. In notation, we will denote N being a reduction of M by $N \preceq M$. For the current set of exercises, a **partition matroid** is a matroid $N = (S, \mathcal{J})$ such that $\mathcal{J} = \{X \subseteq S : |X \cap S_i| \leq 1 \text{ for } i = 1, \ldots, q\}$ for some partition $S = S_1 \cup \cdots \cup S_q$. Clearly, the covering number of N is $\beta(N) = \max\{|S_i| : i = 1, \ldots, q\}$.

Exercise 6. Let $M = (S, \mathcal{I})$ be a k-coverable graphic matroid. Prove that there exists a (2k - 1)-coverable partition matroid N with $N \leq M$, and the bound for the covering number of N is tight.

Exercise 7. Let $M = (S, \mathcal{I})$ be a k-coverable transversal matroid. Prove that there exists a k-coverable partition matroid N with $N \leq M$.

Given a matroid together with a coloring of its ground set, a subset of its elements is called **rainbow** colored if it does not contain two elements of the same color. Accordingly, a coloring is called **rainbow** circuit-free if no circuit or cut is rainbow colored. It is not difficult to check that there is a one-to-one correspondence between reductions of M to partition matroids and rainbow circuit-free colorings of M.

Exercise 8. Every loopless matroid of rank r has a rainbow circuit-free coloring with exactly r colors.

Exercise 9. Characterize those graphs G = (V, E) for which E is the union of two disjoint spanning trees, and G has a rainbow cycle-free coloring with exactly |V| - 1 colors using each color twice.

Exercise 10. Let G = (V, E) be a graph on *n* vertices. Prove that if *E* is colored with exactly n - 1 colors, then *G* either contains a rainbow cycle or a monochromatic cut.