Matroid theory
 Date: 4 March 2024

Exercise 1. Let $M=(S, r)$ be a rank- r transversal matroid on S. Prove that there exists a bipartite graph $G=(S, T ; E)$ implying M such that $|T|=r(S)$.

Conjecture 2 (Rota's basis conjecture). Let M be a matroid of rank n whose ground set is partitioned into n disjoint bases B_{1}, \ldots, B_{n}. Then there exist n pairwise disjoint transversal bases, where a basis is transversal if it intersects B_{i} for $i=1, \ldots, n$.

Exercise 3. Let $B_{1} \in B\left(M_{1}\right), B_{2} \in B\left(M_{2}\right)$ be disjoint bases of rank- n paving matroids on the same ground set, where $n \geq 3$. Let X be a two-element subset of B_{1}. Then there is some $x \in X, y \in B_{2}$ such that $\left(B_{1}-x\right) \cup y \in B\left(M_{1}\right)$ and $\left(B_{2}-y\right) \cup x \in B\left(M_{2}\right)$.

Exercise 4. Let B_{1}, \ldots, B_{n} be disjoint sets of size $n \geq 3$, and let $M_{1} \ldots, M_{n}$ be rank- n paving matroids on $B_{1} \cup \cdots \cup B_{n}$ such that B_{i} is a basis of M_{i} for each $i=1, \ldots, n$. Then there is an ordering of the elements of B_{1} as a_{1}, \ldots, a_{n} and a transversal $\left\{b_{2}, \ldots, b_{n}\right\}$ of $\left(B_{2}, \ldots, B_{n}\right)$ such that for all $j=2, \ldots, n$ the set $\left(B_{1}-\left\{a_{2}, \ldots, a_{j}\right\}\right) \cup\left\{b_{2}, \ldots, b_{j}\right\}$ is a basis of M_{1}, and $\left(B_{j}-b_{j}\right) \cup a_{j}$ is a basis of M_{j}.
Exercise 5. It is known that if S has size 9 and it decomposes into B_{1}, B_{2} and B_{3} where B_{i} is the basis of a paving matroid M_{i} of rank 3 , then it decomposes into three transversals $B_{1}^{\prime}, B_{2}^{\prime}$ and B_{3}^{\prime} where B_{i}^{\prime} is a basis of M_{i}. Using this and the previous two exercises, verify Rota's basis conjecture for paving matroids.

The covering number of a matroid M, denoted by $\beta(M)$, is the minimum number of independent sets needed to cover its ground set. Given matroids $M=(S, \mathcal{I})$ and $N=(S, \mathcal{J})$, we say that N is a reduction of M if $\mathcal{J} \subseteq \mathcal{I}$, that is, every independent set of N is independent in M as well. In notation, we will denote N being a reduction of M by $N \preceq M$. For the current set of exercises, a partition matroid is a matroid $N=(S, \mathcal{J})$ such that $\mathcal{J}=\left\{X \subseteq S:\left|X \cap S_{i}\right| \leq 1\right.$ for $\left.i=1, \ldots, q\right\}$ for some partition $S=S_{1} \cup \cdots \cup S_{q}$. Clearly, the covering number of N is $\beta(N)=\max \left\{\left|S_{i}\right|: i=1, \ldots, q\right\}$.

Exercise 6. Let $M=(S, \mathcal{I})$ be a k-coverable graphic matroid. Prove that there exists a $(2 k-1)$-coverable partition matroid N with $N \preceq M$, and the bound for the covering number of N is tight.

Exercise 7. Let $M=(S, \mathcal{I})$ be a k-coverable transversal matroid. Prove that there exists a k-coverable partition matroid N with $N \preceq M$.

Given a matroid together with a coloring of its ground set, a subset of its elements is called rainbow colored if it does not contain two elements of the same color. Accordingly, a coloring is called rainbow circuit-free if no circuit or cut is rainbow colored. It is not difficult to check that there is a one-to-one correspondence between reductions of M to partition matroids and rainbow circuit-free colorings of M.

Exercise 8. Every loopless matroid of rank r has a rainbow circuit-free coloring with exactly r colors.
Exercise 9. Characterize those graphs $G=(V, E)$ for which E is the union of two disjoint spanning trees, and G has a rainbow cycle-free coloring with exactly $|V|-1$ colors using each color twice.

Exercise 10. Let $G=(V, E)$ be a graph on n vertices. Prove that if E is colored with exactly $n-1$ colors, then G either contains a rainbow cycle or a monochromatic cut.

