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From previous weeks:

Exercise 1. Prove that the circuits of a matroid M are exactly the cuts of its dual M∗.

Exercise 2. A matroid M is called binary if it can be represented over the field GF (2), that is, there exists
a 0-1 matrix A whose columns are identified with the elements of the matorid in such a way that a subset
of columns of A is independent over GF (2) if and only if the corresponding elements form an independent
set of M . Verify that the graphic matroid of any graph is a binary matroid.

Exercise 3. Prove that a matroid M = (S, r) is connected if and only if its dual M∗ = (S, r∗) is connected.

Exercise 4. A matroid M is strongly base orderable if for any two bases A,B there exists a bijection
φ : A → B such that

A−X + φ(X) is a basis for every X ⊆ A. (SBO)

Let A and B be disjoint spanning trees of the same simple undirected graph G. Prove that there is no
bijection between A and B satisfying (SBO).

Exercise 5. Let G = (V,E) be an undirected graph with |V | = n such that E can be decomposed into two
disjoint spanning trees A and B. Prove that there exists a bijection φ : A ∪ B → {1, . . . , 2n− 2} for which
every cycle of G contains two consecutive numbers.

New set of exercises:

Exercise 1. As a further extension of the generalized submodular inequality, prove that b̂(c1) + b̂(c2) ≥
b̂(c1 + c2) holds.

A rank-r matroid M = (S, I) is called a paving matroid if each circuit has size at least r, or in other
words, each set of size at most r − 1 is independent. The matroid is sparse paving if M∗ is also
paving. For a non-negative integer r, a ground set S of size at least r, and a (possibly empty) family
H = {H1, . . . ,Hq} of proper subsets of S such that |Hi ∩ Hj | ≤ r − 2 for 1 ≤ i < j ≤ q, the set
system BH = {X ⊆ S | |X| = r, X ̸⊆ Hi for i = 1, . . . , q} forms the set of bases of a paving matroid,
and in fact every paving matroid can be obtained in this form. We will refer to this as a hypergraph
representation of M .

Exercise 2. Give an example showing that the dual of a paving matroid is not necessarily paving.

Exercise 3. Prove that a paving matroid is sparse paving if and only if it has a hypergraph representation
in which each hyperedge has size r.

Exercise 4. Let S be a ground set of size at least r, H = {H1, . . . ,Hq} be a (possibly empty) collection of
subsets of S, and r, r1, . . . , rq be non-negative integers satisfying

|Hi ∩Hj | ≤ ri + rj − r for 1 ≤ i < j ≤ q. (H1)

(a) Prove that I = {X ⊆ S | |X| ≤ r, |X∩Hi| ≤ ri for 1 ≤ i ≤ q} forms the independent sets of a matroid.

(b) Prove that the rank function of the matroid is rM (Z) = min
{
r, |Z|, min

1≤i≤q
{|Z −Hi|+ ri}

}
.
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(c) Show that if
|S −Hi|+ ri ≥ r for i = 1, . . . , q (H2)

holds, then the rank of the matroid is r.

(d) Prove that the hypergraph in Exercise 4 can be chosen in such a way that

ri ≤ r − 1 for i = 1, . . . , q, (H3)

|Hi| ≥ ri + 1 for i = 1, . . . , q. (H4)

Matroids that can be obtained as described in Problem 4 are called elementary split matroids. A
matroid is a split matroid if it is a direct sum of a single elementary split matroid and some uniform
matroids. We call the representation non-redundant if all of (H1)–(H4) hold. A set F ⊆ S is called
Hi-tight if |F ∩Hi| = ri.

Exercise 5. Verify the following.

(a) The class of elementary split matroids is closed under duality.

(b) The class of elementary split matroids is closed under taking minors.

(c) The class of elementary split matroids is closed under truncation.

Exercise 6. Let M be a rank-r elementary split matroid with a non-redundant representation H =
{H1, . . . ,Hq} and r, r1, . . . , rq. Let F be a set of size r.

(a) If F is Hi-tight for some index i then F is a basis of M .

(b) If F is both Hi-tight and Hj-tight for distinct indices i and j then Hi ∩Hj ⊆ F ⊆ Hi ∪Hj .
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