Matroid theory

Date: 19 February 2024

Exercise 1. Let S be a ground set, $r \in \mathbb{Z}_{+}$be a non-negative integer, and $\mathcal{B} \subseteq 2^{S}$ be a family of sets satisfying the following properties:
($\left.\mathrm{B} 1^{\prime}\right) \mathcal{B} \neq \emptyset$,
(B2') $|B|=r$ for each $B \in \mathcal{B}$,
(B3') for distinct $A, B \in \mathcal{B}$ there exist $a \in A-B$ and $b \in B-A$ such that $A-a+b \in \mathcal{B}$ and $B+a-b \in \mathcal{B}$. Prove that \mathcal{B} forms the family of bases of a matroid.
Exercise 2. Let $M=(S, \mathcal{F})$ be a matroid and $c \in \mathbb{R}^{S}$ be a weight function. Give an algorithm for deciding if a given independent set I can be extended to a maximum weight basis of M.

Exercise 3. Let $M=(S, \mathcal{F})$ be a matroid. Give an algorithm for deciding if there exists a basis that has maximum weight with respect to all of the weight functions c_{1}, \ldots, c_{k}.
Exercise 4. Let $G=(X, Y ; E)$ be a bipartite graph having a unique perfect matching. Prove that there exist orderings $X=\left\{x_{1}, \ldots, x_{n}\right\}$ and $Y=\left\{y_{1}, \ldots, y_{n}\right\}$ of the vertices of X and Y such that $x_{i} y_{i} \in E$ for $1 \leq i \leq n$, and $x_{i} y_{j} \notin E$ for $1 \leq i<j \leq n$.

Exercise 5. Let $G=(V, E)$ be a connected undirected graph.
(a) Find a minimum sized subset $F \subseteq E$ intersecting every spanning tree of G.
(b) Let $c: E \rightarrow \mathbb{R}$ be a cost function. Find a minimum cost subset $F \subseteq E$ intersecting every spanning tree of G.
(c) Let $w: E \rightarrow \mathbb{R}$ be a weight function. Find a minimum sized subset $F \subseteq E$ intersecting every maximum weight spanning tree of G.
(d) Let $c: E \rightarrow \mathbb{R}$ and $w: E \rightarrow \mathbb{R}$ be a cost and a weight functiton. Find a minimum cost subset $F \subseteq E$ intersecting every maximum weight spanning tree of G.
Exercise 6. Let $M=(S, \mathcal{B})$ be a matroid and $w: S \rightarrow \mathbb{R}$ be a weight function. Decide if there exists a basis $B \in \mathcal{B}$ with non-integral total weight.
Exercise 7. Let $M=(S, \mathcal{B})$ be a matroid. Decide if there exists a weight function $w: S \rightarrow \mathbb{R}$ such that $w(S)$ is non-integral but $w(B)$ is integral for every basis $B \in \mathcal{B}$.
Exercise 8. Prove that the following problem is hard: Given a matroid together with a weight function and a real number C, find a basis of weight exactly C.

Exercise 9. Prove that a matroid $M=(S, r)$ is connected if and only if its dual $M^{*}=\left(S, r^{*}\right)$ is connected.
Exercise 10. A matroid M is strongly base orderable if for any two bases A, B there exists a bijection $\varphi: A \rightarrow B$ such that

$$
\begin{equation*}
A-X+\varphi(X) \text { is a basis for every } X \subseteq A \tag{SBO}
\end{equation*}
$$

Let A and B be disjoint spanning trees of the same simple undirected graph G. Prove that there is no bijection between A and B satisfying (SBO).
Exercise 11. Let $G=(V, E)$ be an undirected graph with $|V|=n$ such that E can be decomposed into two disjoint spanning trees A and B. Prove that there exists a bijection $\varphi: A \cup B \rightarrow\{1, \ldots, 2 n-2\}$ for which every cycle of G contains two consecutive numbers.

