Date: 12 February 2024

Exercise 1. Prove that indipendence axioms (I3) and (I3') are equivalent.

Exercise 2. Prove the sets of axioms $\{(I1), (I2), (I3)\}$ and $\{(I1), (I2), (I3'')\}$ are equivalent.

Exercise 3. Prove the sets of axioms $\{(I1), (I2), (I3')\}$ and $\{(I1), (I2), (I3''')\}$ are equivalent.

Exercise 4. Let $b: 2^S \to \mathbb{R}$ be a set function. Prove that b is submodular if and only if $b(X+s) - b(X) \ge b(Y+s) - b(Y)$ holds for every $X \subseteq Y \subseteq S$, $s \in S - Y$.

Exercise 5. Let C_1, \ldots, C_k be pairwise disjoint circuits in a matroid M, and let $x_i \in C_i$ for $i = 1, \ldots, k$. Furthermore, let C be a circuit of M distinct from all C_i s. Verify that M has a circuit that is disjoint from $\{x_1, \ldots, x_k\}$.

Exercise 6. Give an example showing that the following stronger variant of the circuit axiom does not hold: for every pair C_1, C_2 of circuits, $f \in C_1 \cap C_2$, $e_1 \in C_1 - C_2$ and $e_2 \in C_2 - C_1$ there exists a circuit $C \in C_1 \cup C_2 - f$ containing both e_1 and e_2 .

Exercise 7. Let $M = (S, \mathcal{B})$ be a matroid and $c: 2^S \to \mathbb{R}$ be a weight function. Prove that the family of maximum weight bases satisfies the basis axioms.

Exercise 8. Let $M = (S, \mathcal{B})$ be a matroid and $c: 2^S \to \mathbb{R}$ be a weight function. Prove that every maximum weight basis can be obtained by the greedy algorithm.

Exercise 9. Let C and K be a circuit and a cut of the same matroid. Prove that $|C \cap K| \neq 1$.

Exercise 10. Prove that hyperplanes of a matroid M are exactly the complements of its cuts.

Exercise 11. Prove that the circuits of a matroid M are exactly the cuts of its dual M^* .

Exercise 12. Let G = (V, E) be an undirected graph. Prove that for any $X, Y \subseteq V$ we have $c(X) + c(Y) \leq c(X \cap Y) + c(X \cup Y) + d(X, Y)$, where c(Z) denotes the number of components after deleting Z, while d(X, Y) denotes the number of edges going between X - Y and Y - X.

Exercise 13. A matroid M is called binary if it can be represented over the field GF(2), that is, there exists a 0-1 matrix A whose columns are identified with the elements of the matorid in such a way that a subset of columns of A is independent over GF(2) if and only if the corresponding elements form an independent set of M. Verify that the graphic matroid of any graph is a binary matroid.