Matroid theory

Date: 12 February 2024

Exercise 1. Prove that indipendence axioms (I3) and (I3') are equivalent.
Exercise 2. Prove the sets of axioms $\{(I 1),(I 2),(I 3)\}$ and $\left\{(I 1),(I 2),\left(I 3^{\prime \prime}\right)\right\}$ are equivalent.
Exercise 3. Prove the sets of axioms $\left\{(I 1),(I 2),\left(I 3^{\prime}\right)\right\}$ and $\left\{(I 1),(I 2),\left(I 3^{\prime \prime \prime}\right)\right\}$ are equivalent.
Exercise 4. Let $b: 2^{S} \rightarrow \mathbb{R}$ be a set function. Prove that b is submodular if and only if $b(X+s)-b(X) \geq$ $b(Y+s)-b(Y)$ holds for every $X \subseteq Y \subseteq S, s \in S-Y$.

Exercise 5. Let C_{1}, \ldots, C_{k} be pairwise disjoint circuits in a matroid M, and let $x_{i} \in C_{i}$ for $i=1, \ldots, k$. Furthermore, let C be a circuit of M distinct from all $C_{i} \mathrm{~s}$. Verify that M has a circuit that is disjoint from $\left\{x_{1}, \ldots, x_{k}\right\}$.

Exercise 6. Give an example showing that the following stronger variant of the circuit axiom does not hold: for every pair C_{1}, C_{2} of circuits, $f \in C_{1} \cap C_{2}, e_{1} \in C_{1}-C_{2}$ and $e_{2} \in C_{2}-C_{1}$ there exists a circuit $C \in C_{1} \cup C_{2}-f$ containing both e_{1} and e_{2}.

Exercise 7. Let $M=(S, \mathcal{B})$ be a matroid and $c: 2^{S} \rightarrow \mathbb{R}$ be a weight function. Prove that the family of maximum weight bases satisfies the basis axioms.

Exercise 8. Let $M=(S, \mathcal{B})$ be a matroid and $c: 2^{S} \rightarrow \mathbb{R}$ be a weight function. Prove that every maximum weight basis can be obtained by the greedy algorithm.

Exercise 9. Let C and K be a circuit and a cut of the same matroid. Prove that $|C \cap K| \neq 1$.
Exercise 10. Prove that hyperplanes of a matroid M are exactly the complements of its cuts.
Exercise 11. Prove that the circuits of a matroid M are exactly the cuts of its dual M^{*}.
Exercise 12. Let $G=(V, E)$ be an undirected graph. Prove that for any $X, Y \subseteq V$ we have $c(X)+c(Y) \leq$ $c(X \cap Y)+c(X \cup Y)+d(X, Y)$, where $c(Z)$ denotes the number of components after deleting Z, while $d(X, Y)$ denotes the number of edges going between $X-Y$ and $Y-X$.

Exercise 13. A matroid M is called binary if it can be represented over the field $G F(2)$, that is, there exists a 0-1 matrix A whose columns are identified with the elements of the matorid in such a way that a subset of columns of A is independent over $G F(2)$ if and only if the corresponding elements form an independent set of M. Verify that the graphic matroid of any graph is a binary matroid.

