Continuous Optimization

Date: 23 November 2023
Submission deadline:
7 December, 12:00

Let $E\left(x_{0}, M\right)$ denote the ellipsoid $\left\{x \in \mathbb{R}^{n} \mid\left(x-x_{0}\right)^{T} M^{-1}\left(x-x_{0}\right) \leq 1\right\}$.
Exercise 1 (1pt). Consider an affine map $\phi(x)=A x+b$, where $A \in \mathbb{R}^{n \times n}$ is an invertible matrix. Show that $\phi\left(E\left(x_{0}, M\right)\right)=E\left(A x_{0}+b, A M A^{T}\right)$.

Exercise $2(2 \mathrm{pts})$. Let $E\left(x_{0}, M\right) \subseteq \mathbb{R}^{2}$ be an ellipsoid where

$$
x_{0}=(1,2) \text { and } M=\left(\begin{array}{ll}
9 & 0 \\
0 & 4
\end{array}\right) .
$$

Let $\phi(x)=\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right) x+(3,5)$. Show that M is positive definite. Write up the ellipsoid $\phi\left(E\left(x_{0}, M\right)\right)$.
Exercise 3 (2pts). Let both B_{1} be the unit ball with the origin as a center and B_{2} be the unit ball with the point $(1,0)$ as a center in \mathbb{R}^{2}. Let

$$
x_{1}=(1,1), x_{2}=(2,2), M_{1}=\left(\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right), \text { and } M_{2}=\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right) .
$$

Prove that there exists no affine mapping ϕ such that $\phi\left(B_{1}\right)=E\left(x_{1}, M_{1}\right)$ and $\phi\left(B_{2}\right)=E\left(x_{2}, M_{2}\right)$.
Exercise $4(2 \mathrm{pts})$. Let $C=[0,1] \times[0,1] \subseteq \mathbb{R}^{2}$ and let $a=(3,3)$. Find all hyperplanes that separates C and a.
Exercise 5 (2pts). Consider the polytope

$$
P=\left\{x \in \mathbb{R}^{3} \mid x_{1}+3 x_{2}+x_{3} \geq 3, x_{1}-x_{2}+x_{3} \geq 5, x_{2}+x_{3} \leq 4,0 \leq x_{1} \leq 2,0 \leq x_{2} \leq 2\right\}
$$

Let $x_{0}=(0,0,3)$ and $M_{0}=9 I$, where I is the 3×3 identity matrix. Consider the ellipsoid $E_{0}=E\left(x_{0}, M_{0}\right)$. Show that $P \subseteq E_{0}$.

