Continuous Optimization

Date: 16 November 2023
Submission deadline:
23 November, 12:00

Exercise 1 (1pt). Let $P=\left\{x \in \mathbb{R}^{n} \mid\left\langle a_{i}, x\right\rangle \leq b_{i}\right.$ for $\left.i=1, \ldots, m\right\}$ and $x \in \operatorname{int}(P)$. For a vector $c \in \mathbb{R}^{n}$, let $c_{x}=H(x)^{-1} c$, where $H(x)$ is the Hessian of the logarithmic barrier function. Verify that the point $x-c_{x} /\left\|c_{x}\right\|_{x}$ is in P.

Exercise $2(2 \mathrm{pts})$. Let $G=(V, E)$ be an undirected graph. The spanning tree polytope of G is the convex hull of the characteristic vectors of spanning trees of G. Define $P(G)=\left\{x \in \mathbb{R}_{+}^{E} \mid x(\delta(S)) \geq 1\right.$ for $\left.\emptyset \subset S \subset V\right\}$, where $\delta(S)$ denotes the set of edges having exaactly one endpoint in S.
(a) Give an example showing that P is not necessarily the spanning tree polytope of G.
(b) Show that even if we add the constraint $x(E)=|V|-1$ to the above cut constraints, it still does not determine the spanning tree polytope.

Exercise 3 (2pts). The perfect matching polytope of a graph G is given by $P_{P M}(G)=\left\{x \in \mathbb{R}_{+}^{E} \mid x(\delta(v))=\right.$ 1 for $v \in V, x(\delta(U)) \geq 1$ for $U \subseteq V,|U|$ odd $\}$. Separating over $P_{P M}(G)$ means that for a vector $x \in \mathbb{R}^{E}$, we want to decide if $x \in P_{P M}(G)$ or not.
(a) Prove that separating over $P_{P M}(G)$ reduces to the following odd minimum cut problem: given $x \in \mathbb{Q}^{E}$, find

$$
\min _{S \subseteq V,|S| \text { odd }} \sum_{u \in S, v \notin S, u v \in E} x_{u v} .
$$

(b) Prove that the odd minimum cut problem is polynomially solvable.

Exercise $4(1 \mathrm{pt})$. Let $P=\left\{x \in \mathbb{R}^{n} \mid A x \leq b\right\}$ be a polyhedron and t be a vector with all coordinates equal to $\alpha>0$. Show that $\left\{x \in \mathbb{R}^{n} \mid A x \leq b+t\right\}$ is full dimensional.

