Continuous Optimization

Date: 9 November 2023
Submission deadline:
16 November, 12:00

Exercise 1 (1pt). Explain how to find a steepest descent direction in the ℓ_{∞}-norm, and give a simple interpretation.

Exercise 2 (1pt). Determine the square root of 2, accurate to six decimal places, using Newton's method (your argument for accuracy should not rely on comparison with a result obtained by a calculator).

Exercise 3 (1pts). Let $P=\left\{x \in \mathbb{R}^{2}:\left|x_{1}\right| \leq 1,\left|x_{2}\right| \leq 1\right\}$ and $c=(1,1) \in \mathbb{R}^{2}$. Characterize the points of the central path Γ_{c}.

Exercise 4 (2pts). Intuitively, if the gradient of the logarithmic barrier at a given point x is short, then the point x is far away from the boundary of the polytope. In particular, the analytic center lies well inside the polytope. More formally, consider the following problem. Let $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$ and $P=\left\{x \in \mathbb{R}^{n}: A x \leq b\right\}$ be a polytope. Suppose that $x_{0} \in P$ is a point such that $b_{i}-\left\langle a_{i}, x_{0}\right\rangle \geq \delta$ for every $i=1, \ldots, m$ and some $\delta>0$. Prove that if D is the diameter of P (in the Euclidean norm) then for every $x \in P$ we have $b_{i}-\left\langle a_{i}, x\right\rangle \geq \delta \cdot(m+\|g(x)\| \cdot D)^{-1}$ for $i=1, \ldots, m$, where $g(x)$ is the gradient of the logarithmic barrier function at x.

Exercise 5 (3pts). Let $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$ and $P=\left\{x \in \mathbb{R}^{n}: A x \leq b\right\}$ be a polytope. For $x \in P$, let $H(x)$ denote the Hessian of the logarithmic barrier function for P. We define the Dinkin ellipsoid at a point $x \in P$ as $E_{x}=\left\{y \in \mathbb{R}^{n}:(y-x)^{T} H(x)(y-x) \leq 1\right\}$. Let x_{0}^{*} be the analytic center.
(a) Prove that for all $x \in \operatorname{int}(P), E_{x} \subseteq P$.
(b) Assume without loss of generality (by shifting the polytope) that $x_{0}^{*}=0$. Prove that $P \subseteq m E_{x_{0}^{*}}$.
(c) Prove that if the set of constraints is symmetric, i.e., for every constraint of the form $\left\langle a^{\prime}, x\right\rangle \leq b^{\prime}$ there is a corresponding constraint $\left\langle a^{\prime}, x\right\rangle \geq-b^{\prime}$, then $x_{0}^{*}=0$ and $P \subseteq \sqrt{m} E_{x_{0}^{*}}$.

