Continuous Optimization Date: 26 October 2023 Submission deadline: 9 November, 12:00

Exercise 1 (1pt). Let $f(x) = x^2 - a$. Show that Newton's method leads to the recurrence

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right).$$

Exercise 2 (2pts). Consider the problem of minimizing the function $f(x) = x \log x$ over $x \in \mathbb{R}_{>0}$. Perform the full convergence analysis of Newton's method - consider all starting points $x_0 \in \mathbb{R}_{>0}$ and determine where the method converges for each of them.

Exercise 3 (2pts).

- (a) Let $f(x_1, x_2) = x_1^2 + K x_2^2$ be a quadratic function where K > 0. Define $||(u_1, u_2)||_{\circ} := \sqrt{u_1^2 + K u_2^2}$. Determine the optimum point of $\max_{\|u\|_{\circ}=1} -\langle \nabla f(x), u \rangle$.
- (b) Let $f(x) = x^T A x + b^T x$ (where A is positive definite). Define $||u||_A := \sqrt{u^T A u}$. Determine the optimum point of $\max_{||u||_A = 1} -\langle \nabla f(x), u \rangle$.

Exercise 4 (1pt). Let $f : \mathbb{R}^n \to \mathbb{R}$ a function and define $\tilde{f} : \mathbb{R}^n \to \mathbb{R}$ as $\tilde{f}(x) = f(Ax + b)$ where $A \in \mathbb{R}^{n \times n}$ is an invertible matrix and $b \in \mathbb{R}^n$. Verify that if x_0 moves to x_1 by applying one step of Newton's method with respect to \tilde{f} , then $y_0 = Ax_0 + b$ moves to $y_1 = Ax_1 + b$ by applying one step of Newton's method with respect to f.

Exercise 5 (1pt). Verify that $||n(x)||_x$ is affinely invariant.

Exercise 6 (1pt). Verify that the **NL** condition is affinely invariant, that is, $x \mapsto f(x)$ satisfies this condition if and only if $x \mapsto f(\Phi(x))$ satisfies it, for any affine change of variables Φ .

Exercise 7 (2pts). Let $f : \mathbb{R}^n \to \mathbb{R}$ be a strictly convex function. Verify that $\|\cdot\|_{H(x)^{-1}}$ is dual to the norm $\|\cdot\|_x$ (*H* denotes the Hessian of *f*).