Continuous Optimization

Date: 12 October 2023
Submission deadline:
19 October, 12:00

Exercise 1 (2pts). Let \mathcal{M} be a nonempty family of subsets of $\{1, \ldots, n\}$. For a set $M \in \mathcal{M}$, let $1_{M} \in \mathbb{R}^{n}$ be the indicator vector of M, i.e., $1_{M}(i)=1$ if $i \in M$ and $1_{M}(i)=0$ otherwise. Consider a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ given by

$$
f(x):=\log \left(\sum_{M \in \mathcal{M}} e^{\left\langle x, 1_{M}\right\rangle}\right) .
$$

Prove that the gradient of f is L-Lipschitz continuous for some $L>0$ that depends polynomially on n with respect to the Eucledian norm.

Exercise 2 (3 pts). Online convex optimization. Given a sequence of convex and differentiable functions $f^{1}, f^{2}, \cdots: K \rightarrow \mathbb{R}$ and a sequence of points $x^{1}, x^{2}, \cdots \in K$, define the regret up to time T to be

$$
\operatorname{Regret}_{T}:=\sum_{t=1}^{T} f^{t}\left(x^{t}\right)-\min _{x \in K} \sum_{t=1}^{T} f^{t}(x) .
$$

Consider the following strategy inspired by the mirror descent algorithm, called follow the regularized leader:

$$
x^{t+1}:=\underset{x \in K}{\operatorname{argmin}} \sum_{i=1}^{t} f^{i}(x)+R(x)
$$

for a convex regularizer $R: K \rightarrow \mathbb{R}$ and $x^{1}:=\operatorname{argmin}_{x \in K} R(x)$. Assume that the gradient of each f_{i} is bounded everywhere by G and that the diameter of K is bounded by D. Prove the following:
(a) $\operatorname{Regret}_{T} \leq \sum_{t=1}^{T}\left(f^{t}\left(x^{t}\right)-f^{t}\left(x^{t+1}\right)\right)-R\left(x^{1}\right)+R\left(x^{*}\right)$ for every $T=1, \ldots$, where $x^{*}:=\operatorname{argmin}_{x \in K} \sum_{t=1}^{T} f^{t}(x)$.
(b) Given $\varepsilon>0$, use this method for $R(x):=\frac{1}{\eta}\|x\|_{2}^{2}$ for an appropriate choice of η and T to get $\frac{1}{T} \operatorname{Regret}_{T} \leq \varepsilon$.

Exercise 3 (3pts). Let $G=(V, E)$ be an undirected graph with n vertices and m edges, and let $s, t \in V$ distinct vertices. Let $B \in \mathbb{R}^{n \times m}$ denote the vertex-edge incidence matrix of the graph. Consider the $s-t$ maximum flow problem:

$$
\begin{array}{rl}
\max _{x \in \mathbb{R}^{m}, F \geq 0} & F \\
\text { s.t. } & B x=F b, \\
& \|x\|_{\infty} \leq 1,
\end{array}
$$

where $b=e_{s}-e_{t}$.
(a) Prove that the dual of this formulation is equivalent to the following:

$$
\begin{aligned}
& \min _{y \in \mathbb{R}^{n}} \sum_{u v \in E}\left|y_{u}-y_{v}\right| \\
& \text { s.t. } \quad y_{s}-y_{t}=1 .
\end{aligned}
$$

(b) Prove that the optimal value of the above problem is equal to $\operatorname{MinCut}_{s, t}(G)$, the minimum number of edges one needs to remove from G to disconnect s from t. This latter problem is known as the $s-t$ minimum cut problem.
(c) Reformulate the dual as follows:

$$
\begin{array}{cl}
\min _{x \in \mathbb{R}^{m}}\|x\|_{1} \\
\text { s.t. } & x \in \operatorname{Im}\left(B^{T}\right), \\
& \langle x, z\rangle=1
\end{array}
$$

for some $z \in \mathbb{R}^{m}$ that depends on G and s, t. Write an explicit formula for z.

