Continuous Optimization

Date: 28 September 2023
Submission deadline:
5 October, 12:00

Exercise 1 (2pts). Let us consider the following functions:

$$
\begin{gathered}
f_{1}\left(w_{1}, w_{2}\right)=\frac{1}{2} w_{1}^{2}+\frac{7}{2} w_{2}^{2} \\
f_{2}\left(w_{1}, w_{2}\right)=100\left(w_{2}-w_{1}^{2}\right)^{2}+\left(1-w_{1}\right)^{2} \quad\left(\text { Rosenbrock' }^{\prime} \text { sfunction }\right) \\
f_{3}\left(w_{1}, w_{2}\right)=\frac{1}{2} w_{1}^{2}+w_{1} \cos w_{2} .
\end{gathered}
$$

(a) Calculate the gradient of the functions.
(b) Determine the global minimum of the functions.
(c) Are these function convex?

Exercise 2 (2pts). Let $G=(V, E)$ be an undirected graph and let B be the $|E| \times|V|$ matrix such that the i th row corresponds to the i th edge. Let the i th edge be $u v$. Then the i th row of B is $\chi_{u}-\chi_{v}$, where χ_{u} is the vector in $\mathbb{R}^{|V|}$ with one in the u th position and zero otherwise. The $|V| \times|V|$ matrix L defined by $B^{T} B$ is called the Laplacian matrix of the graph.
(a) Prove that $L=D-A$, where D is the diagonal degree matrix (i.e. $D_{v, v}=\operatorname{deg}(v)$), and A is the adjacency matrix of the graph (i.e. $A_{u, v}=1$ if $u v \in E$).
(b) Show that the all-1 vector is in the kernel of L.
(c) Prove that when the graph is connected, the kernel is just the one-dimensional space spanned by the all-1 vector.

Exercise 3 (1pt). Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a differentialbe function. Prove that if $\|\nabla f(x)\| \leq G$ for all $x \in \mathbb{R}^{n}$ and some $G>0$, then f is G-Lipschitz, that is, $|f(x)-f(y)| \leq G\|x-y\|$ for every $x, y \in \mathbb{R}^{n}$.

Exercise $4(1 \mathrm{pt})$. Let $G=(V, E)$ be an undirected graph and $s, t \in V$. Consider the following problem:

$$
\begin{array}{ll}
& \min \sum_{u v \in E}\left|x_{u}-x_{v}\right| \\
\text { s.t. } & x_{s}-x_{t}=1
\end{array}
$$

This is not a linear program in this form. Rewrite it as a linear program.
Exercise 5 (1pt). Given a convex, differentiable function $F: K \rightarrow \mathbb{R}$ over a convex subset K of \mathbb{R}^{n}, the Bregman divergence of $x, y \in K$ is defined as $D_{F}(x, y)=F(x)-F(y)-\langle\nabla F(y), x-y\rangle$. Prove that $D_{F}(x, y) \geq 0$.

Exercise $6(1 \mathrm{pt})$. Define a function F for which $D_{F}(x, y)=\|x-y\|_{2}^{2}$.
Exercise 7 (1pt). Let $F: K \rightarrow \mathbb{R}$ be a convex, differentiable function, and let $x, y, z \in K$. Prove that

$$
\langle\nabla F(y)-\nabla F(z), y-x\rangle=D_{F}(x, y)+D_{F}(y, z)-D_{F}(x, z) .
$$

