Continuous Optimization Date: 28 September 2023 Submission deadline: 5 October, 12:00

Exercise 1 (2pts). Let us consider the following functions:

$$f_1(w_1, w_2) = \frac{1}{2}w_1^2 + \frac{7}{2}w_2^2$$

$$f_2(w_1, w_2) = 100(w_2 - w_1^2)^2 + (1 - w_1)^2 \qquad (Rosenbrock's function)$$

$$f_3(w_1, w_2) = \frac{1}{2}w_1^2 + w_1 \cos w_2.$$

- (a) Calculate the gradient of the functions.
- (b) Determine the global minimum of the functions.
- (c) Are these function convex?

Exercise 2 (2pts). Let G = (V, E) be an undirected graph and let B be the $|E| \times |V|$ matrix such that the *i*th row corresponds to the *i*th edge. Let the *i*th edge be uv. Then the *i*th row of B is $\chi_u - \chi_v$, where χ_u is the vector in $\mathbb{R}^{|V|}$ with one in the *u*th position and zero otherwise. The $|V| \times |V|$ matrix L defined by $B^T B$ is called the Laplacian matrix of the graph.

- (a) Prove that L = D A, where D is the diagonal degree matrix (i.e. $D_{v,v} = deg(v)$), and A is the adjacency matrix of the graph (i.e. $A_{u,v} = 1$ if $uv \in E$).
- (b) Show that the all-1 vector is in the kernel of L.
- (c) Prove that when the graph is connected, the kernel is just the one-dimensional space spanned by the all-1 vector.

Exercise 3 (1pt). Let $f : \mathbb{R}^n \to \mathbb{R}$ be a differentiable function. Prove that if $\|\nabla f(x)\| \leq G$ for all $x \in \mathbb{R}^n$ and some G > 0, then f is G-Lipschitz, that is, $|f(x) - f(y)| \leq G ||x - y||$ for every $x, y \in \mathbb{R}^n$.

Exercise 4 (1pt). Let G = (V, E) be an undirected graph and $s, t \in V$. Consider the following problem:

$$\min \sum_{uv \in E} |x_u - x_v|$$

s.t. $x_s - x_t = 1$

This is not a linear program in this form. Rewrite it as a linear program.

Exercise 5 (1pt). Given a convex, differentiable function $F: K \to \mathbb{R}$ over a convex subset K of \mathbb{R}^n , the Bregman divergence of $x, y \in K$ is defined as $D_F(x, y) = F(x) - F(y) - \langle \nabla F(y), x - y \rangle$. Prove that $D_F(x, y) \ge 0$.

Exercise 6 (1pt). Define a function F for which $D_F(x,y) = ||x - y||_2^2$.

Exercise 7 (1pt). Let $F: K \to \mathbb{R}$ be a convex, differentiable function, and let $x, y, z \in K$. Prove that

$$\langle \nabla F(y) - \nabla F(z), y - x \rangle = D_F(x, y) + D_F(y, z) - D_F(x, z).$$