Exercise 1 (1pt). Verify that the set of positive semidefinite matrices forms a convex cone.

Exercise 2 (1pt). Show that $f : \mathbb{R}^n \to \mathbb{R}$ is convex if and only if g(t) := f(ty + (1-t)x) is convex for any $x, y \in dom(f)$.

Exercise 3 (2pts). Prove that

- (a) e^{ax} is convex on \mathbb{R} for any $a \in \mathbb{R}$,
- (b) x^a is convex on $\mathbb{R}_{>0}$ when $a \ge 1$ or $a \le 0$, and is concave when 0 < a < 1,
- (c) $\log(x)$ is concave on $\mathbb{R}_{>0}$,
- (d) $x \log(x)$ is convex on $\mathbb{R}_{>0}$.

Exercise 4 (2pts). Show the following.

- (a) (Nonnegative weighted sum) If $w_i \ge 0$ and f_i is convex for every *i*, then $f = \sum_i w_i f_i$ is convex.
- (b) (Affine mapping) If f is convex, then g(x) = f(Ax + b) is convex.
- (c) (Pointwise maximum) If f_i is convex for every *i*, then $f(x) = \max_i \{f_i(x)\}$ is convex.
- (d) (Composition) If g is convex and h is convex and non-decreasing, then f(x) = h(g(x)) is convex.

Exercise 5 (1pt). Let S_1 an S_2 be convex sets. Prove that $S_1 - S - 2 = \{x - y | x \in S_1, y \in S_2\}$ is also convex.

Exercise 6 (1pt). Prove that for an arbitrary set $S \subseteq \mathbb{R}^n$, the polar set

$$S^* = \{ y \in \mathbb{R}^n \mid y^T x \le 1 \ \forall x \in S \}$$

is convex.

Exercise 7 (1pt). Prove that for an arbitrary function $f : \mathbb{R}^n \to \mathbb{R}$, the conjugate function

$$f^* = \sup\{y^T x - f(x) \mid x \in dom(f)\}$$

is convex.

Exercise 8 (2pts). Consider the optimization problem

$$\min_{x \in \mathbb{R}} \quad x^2 + 2x + 4$$

s.t.
$$x^2 - 4x \le -3$$

- (a) Solve this problem, i.e., find the optimal solution.
- (b) Is this a convex program?
- (c) Derive the dual problem $\max_{\lambda \ge 0} g(\lambda)$. Find g and its domain.
- (d) Prove that weak duality holds.
- (e) Is Slater's condition satisfied? Does strong duality hold?