Exercise 1 (1pt). Verify that the set of positive semidefinite matrices forms a convex cone.
Exercise $2(1 \mathrm{pt})$. Show that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex if and only if $g(t):=f(t y+(1-t) x)$ is convex for any $x, y \in \operatorname{dom}(f)$.

Exercise 3 (2pts). Prove that
(a) $e^{a x}$ is convex on \mathbb{R} for any $a \in \mathbb{R}$,
(b) x^{a} is convex on $\mathbb{R}_{>0}$ when $a \geq 1$ or $a \leq 0$, and is concave when $0<a<1$,
(c) $\log (x)$ is concave on $\mathbb{R}_{>0}$,
(d) $x \log (x)$ is convex on $\mathbb{R}_{>0}$.

Exercise $4(2 \mathrm{pts})$. Show the following.
(a) (Nonnegative weighted sum) If $w_{i} \geq 0$ and f_{i} is convex for every i, then $f=\sum_{i} w_{i} f_{i}$ is convex.
(b) (Affine mapping) If f is convex, then $g(x)=f(A x+b)$ is convex.
(c) (Pointwise maximum) If f_{i} is convex for every i, then $f(x)=\max _{i}\left\{f_{i}(x)\right\}$ is convex.
(d) (Composition) If g is convex and h is convex and non-decreasing, then $f(x)=h(g(x))$ is convex.

Exercise 5 (1pt). Let S_{1} an S_{2} be convex sets. Prove that $S_{1}-S-2=\left\{x-y \mid x \in S_{1}, y \in S_{2}\right\}$ is also convex.
Exercise 6 (1pt). Prove that for an arbitrary set $S \subseteq \mathbb{R}^{n}$, the polar set

$$
S^{*}=\left\{y \in \mathbb{R}^{n} \mid y^{T} x \leq 1 \forall x \in S\right\}
$$

is convex.
Exercise 7 (1pt). Prove that for an arbitrary function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, the conjugate function

$$
f^{*}=\sup \left\{y^{T} x-f(x) \mid x \in \operatorname{dom}(f)\right\}
$$

is convex.
Exercise 8 (2pts). Consider the optimization problem

$$
\begin{gathered}
\min _{x \in \mathbb{R}} \quad x^{2}+2 x+4 \\
\text { s.t. } \quad x^{2}-4 x \leq-3
\end{gathered}
$$

(a) Solve this problem, i.e., find the optimal solution.
(b) Is this a convex program?
(c) Derive the dual problem $\max _{\lambda \geq 0} g(\lambda)$. Find g and its domain.
(d) Prove that weak duality holds.
(e) Is Slater's condition satisfied? Does strong duality hold?

