Exercise $1(1 \mathrm{pt})$. Given a matrix $A \in \mathbb{R}^{n \times n}$, then λ is an eigenvalue of A if and only if $\operatorname{det}(A-\lambda I)=0$.
Exercise 2 (1pt). Given an $n \times n \mathrm{PD}$ matrix H and a vector $a \in \mathbb{R}^{n}$, prove that $a a^{T} \preceq H$ of and only if $1 \geq a^{T} H^{-1} a$.

Exercise 3 (1pt). Given a symmetric matrix A, if λ_{1}, u_{1} and λ_{2}, u_{2} are two eigenvalue-eigenvector pairs such that $\lambda_{1} \neq \lambda_{2}$ then $\left\langle u_{1}, u_{2}\right\rangle=0$.

Exercise 4 (2pts). Let $M \in \mathbb{R}^{n \times n}$ be a real symmetric matrix. Prove that the following characterizations are equivalent:
(i) all eigenvalues of M are non-negative,
(ii) $x^{T} M x \geq 0$ for all $x \in \mathbb{R}^{n}$,
(iii) $M=V^{T} V$ for some $V \in \mathbb{R}^{n \times n}$.

Exercise 5 (1pt). Prove that if M is an $n \times n$ real symmetric matric that is PD , then $M=B B^{T}$ for some $n \times n$ real matrix B with linearly independent rows.

Exercise 6 (1pt). Prove that all the eigenvalues of an $n \times n$ real symmetric matrix are real. Show that every eigenvalue of a PSD matrix is nonnegative.

Exercise 7 (2pts). Verify that the triangle inequalities are satisfied for the following norms:
(a) ℓ_{∞}-norm, $\|x\|_{\infty}=\max \left\{\left|x_{1}\right|, \ldots,\left|x_{n}\right|\right\}$,
(b) quadratic norm, $\|x\|_{M}=\sqrt{x^{T} M x}=\left\|M^{\frac{1}{2}} x\right\|_{2}$ for a positive definite $M \in \mathbb{R}^{n \times n}$.

Exercise $8(1 \mathrm{pt})$. Show that for an $n \times n$ real symmetric matrix A with eigenvalues $\lambda_{1}(A) \leq \cdots \leq \lambda_{n}(A)$, its matrix norm is $\|A\|_{2}=\max \left\{\left|\lambda_{1}(A)\right|,\left|\lambda_{n}(A)\right|\right\}$. If in addition A is PSD, then $\|A\|_{2}=\lambda_{n}(A)$.

Exercise 9 (1pt). Let $\|\cdot\|$ be a norm. Verify that the dual norm $\|x\|_{*}=\sup _{y \in \mathbb{R}^{n}:\|y\| \leq 1}\langle x, y\rangle$ is indeed a norm.
Exercise 10 (1pt). Let $p, q \in \mathbb{R}_{+}$be such that $\frac{1}{p}+\frac{1}{q}=1$. Prove that the norms $\|\cdot\|_{p}$ and $\|\cdot\|_{q}$ are dual to each other.

