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Lecture 6: Submodular

functions



Motivation

Semantic segmentation:

Question: How can we map pixels to objects?



Motivation

Document summarization:

Question: How can we select representative sentences?



Motivation

Sensor placement:

Question: How to place the sensors optimally?



Motivation

Sensor placement:

Obs. Some placements are more e�ective than others.



Motivation

Sensor placement:

Obs. Adding a new sensor has �more value� in the �rst case than in the second

case.



Discrete optimization

Setup: Given a set F of feasible solutions and a function f : F → R, solve
max{f (X ) : X ∈ F}

min{f (X ) : X ∈ F}

Arbitrary set functions are hopelessly di�cult to optimize...for 100 items, we

should check 2100 sets!

Goal: Find su�cient conditions that make the problem tractable.

Recall: In the continuous case, f : Rn → R can be minimized if f is convex,

and maximized if f is concave.

⇒ Is it possible to �nd discrete counterparts?

Note: Many problems in real life applications assume a discrete setting,

therefore it would be crucial to provide e�cient algorithms.



Set functions

Let S be a set of size n. A set function is a function of the form f : 2S → R,
where 2S denotes the set of all subsets of S .

Given a set X ⊆ S and s ∈ S , we denote by

X + s := X ∪ {s},
X − s := X \ {s}.

The marginal value of s w.r.t. X is

f (s|X ) = f (X + s)− f (X ).

Further properties:

• Monotone: if X ⊆ Y ⊆ S , then f (X ) ⩽ f (Y ).

• Nonnegative: f (X ) ⩾ 0 for X ⊆ S .

• Normalized: f (∅) = 0 (we will usually assume this throughout).



Modular functions

A set function f : 2S → R is modular if for all X ⊆ S we have

f (X ) =
∑
s∈X

f (s).

Intuitively: Associate a weight ws with each s ∈ S , and set f (X ) =
∑

s∈X ws .

⇒ Discrete analogue of linear functions.



Submodularity

A set function f : 2S → R is submodular if for all X ⊆ Y ⊆ S and s ∈ S \ Y
we have

f (s|X ) ⩾ f (s|Y ).

Intuitively: The gain is more from a new element if we start with a smaller set.

Example: f (new car|{bike}) ⩾ f (new car|{bike,car,private jet})

[The marginal value of an element exhibits diminishing marginal returns.]

Remarks:

• f is supermodular if −f is submodular

• f is modular if and only if it is both sub- and supermodular



Equivalent de�nition I

A set function f : 2S → R is submodular if and only if for all X ,Y ⊆ S we have

f (X ) + f (Y ) ⩾ f (X ∩ Y ) + f (X ∪ Y ).

Proof.
⇐ Let X ⊆ Y ⊆ S and s ∈ S \ Y . Then X ∪ Y = Y and X ∩ Y = X , hence

f (s|X ) = f (X + s)− f (X ) ⩾ f (Y + s)− f (Y ) = f (s|Y ).

⇒ Assume that f is submodular, and let X \ Y = {x1, . . . , xk}. Furthermore,

let Xi := {x1, . . . , xi} for i = 1, . . . , k . Then

f ((X ∩ Y ) ∪ X1)− f (X ∩ Y ) ⩾ f (Y ∪ X1)− f (Y )

f ((X ∩ Y ) ∪ X2)− f ((X ∩ Y ) ∪ X1) ⩾ f (Y ∪ X2)− f (Y ∪ X1)

...

f ((X ∩ Y ) ∪ Xk})− f ((X ∩ Y ) ∪ Xk−1) ⩾ f (Y ∪ Xk)− f (Y ∪ Xk−1})

f (X )− f (X ∩ Y ) ⩾ f (X ∪ Y )− f (Y )



Equivalent de�nition II

A set function f : 2S → R is supermodular if and only if for all X ,Y ⊆ S we

have

f (X ) + f (Y ) ⩽ f (X ∩ Y ) + f (X ∪ Y ).

A set function f : 2S → R is modular if and only if for all X ,Y ⊆ S we have

f (X ) + f (Y ) = f (X ∩ Y ) + f (X ∪ Y ).

Remark: These functions play a crucial role in combinatorial optimization, and

also in machine learning.



Example I - Coverage

Coverage function. Assume that for s ∈ S , we are given a measurable set As .

Then

f (X ) :=

∣∣∣∣∣⋃
s∈X

As

∣∣∣∣∣
is submodular.

A1

A2

A3

A4



Example II - Cuts in graphs

Cut function. Let G = (V ,E ) be an undirected graph. Then f (X ) := dG (X )

is submodular.

b

b
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b

b

b

b

b

X

In- and out-degrees. Let D = (V ,A) be an directed graph. Then the

out-degree f (X ) := d+
D (X ) and the in-degree f (X ) := d−

D (X ) functions are

submodular.
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Example III - Entropy

Entropy. Let (ξs)s∈S be random variables with �nite number of values in

(Xs)s∈S , respectively. For a set X = {s1, . . . , sk} ⊆ S , the joint entropy is

f (X ) = −
∑

xs1∈Xs1

· · ·
∑

xsk∈Xsk

P(xs1 , . . . , xsk ) log2 P(xs1 , . . . , xsk ).

Then f is submodular.

Mutual information. i(X ) := f (X ) + f (S \ X )− f (S) is submodular.



Properties

1 Positive linear combinations: If f1, . . . , fk are submodular and λi ⩾ 0 for

i = 1, . . . , k , then
∑k

i=1 fi is submodular.

2 Re�ection: If f is submodular, then g(X ) := f (S \ X ) is submodular.

3 Restriction: If X ⊆ S and f is submodular, then g(Y ) := f (X ∩ Y ) is

submodular.

4 Conditioning: If X ⊆ S and f is submodular, then g(Y ) := f (X ∪ Y ) is

submodular.

5 Contraction: If X ⊆ S and f is submodular, then

g(Y ) := f (X ∪ Y )− f (X ) is submodular.

6 Maximum/minimum: If f and g are submodular, then max{f , g} and

min{f , g} are not necessarily submodular.



Submodularity and concavity

Given a set X ⊆ S , let 1X denote its charasteristic vector, that is,

(1X )s =

{
1 if s ∈ X ,

0 otherwise.

A set function f : 2S → R can be thought of as a function de�ned on {0, 1}S .

Recall: A function f : R → R is concave if f ′(x) is non-increasing in x .

Now: A function f : {0, 1}S → R is submodular if the �discrete derivative�

∂s f (x) = f (x + es)− f (x)

is non-increasing in x .

Furthermore: If a function g : R+ → R is concave, then f (X ) := g(|X |) is
submodular.



Submodularity and convexity I

Let f : {0, 1}S → R be a set function. For a vector c ∈ RS , let s1, . . . , sn be an

ordering of the elements S such that cs1 ⩾ . . . ⩾ csn . Furthermore, let

Si := {s1, . . . , si} for i = 1, . . . , n. The Lovász-extension of f on c is

f̂ (c) : = csn f (Sn) +
n−1∑
i=1

(csi − csi+1)f (Si )

= cs1 f (S1) +
n∑

i=2

csi (f (Si )− f (Si−1)

= cs1 f (S1) +
n∑

i=2

csi f (si |Si−1).

⇒ The sum of the marginal gains weighted by the components of c .



Submodularity and convexity II

• f̂ is an extension of f in the sense that f̂ (1X ) = f (X ) for X ⊆ S .

• f̂ is piecewise a�ne.

• f̂ is convex if and only if f is submodular.

• When restricted to [0, 1]S , f̂ attains its minimum at one of the vertices,

that is,

min
c∈[0,1]S

f̂ (c) = min
X⊆S

f (S).

Conclusion: Submodular functions share properties in common with both

convex and concave functions. So, can we minimize/maximize them?



Submodular minimization I

Input: A submodular function f : 2S → R.

Goal: Find argminX⊆S f (X ).

By the properties of the Lovász extension, this is equivalent to �nding

argmin
x∈[0,1]n

f̂ (x).

Thm.

The Lovász extension f̂ can be minimized using the Ellipsoid method in

O(n8 log2 n) time.

Remarks:

• O(n6) algorithm (Schrijver (2000), Iwata et al. (2001), Orlin (2009)).

• Faster algorithms in special cases (cuts, �ows).



Submodular minimization II

1 Symmetric submodular functions. The function f is symmetric if

f (X ) = f (S \ X ). In this case

2f (X ) = f (X ) + f (S \ X ) ⩾ f (∅) + f (S) = 2f (∅) = 0,

hence the minimum is trivially attained at S .

⇒ Usually, we are interested in argmin∅̸=X⊂S f (X ).

Queyranne, 1998

If f is symmetric, then there is a fully combinatorial algorithm for solving

argmin∅̸=X⊂S f (X ) in O(n3) time.

2 Constrained setting. A simple constraint can make submodular

minimization hard, e.g., n1/2-hardness for minX⊆S,|X |⩾k f (S).

⇒ In such cases, one might be interested in �nding approximate solutions.



Example - Clustering

Input: A set S .

Goal: Find a partition into k clusters S1, . . . ,Sk such that

g(S1, . . . ,Sk) =
k∑

i=1

f (Si )

is minimized, where f is a submodular function (e.g. entropy or cut function).

Observation: For k = 2, the function g(X ) = f (X ) + f (S \ X ) is symmetric

and submodular, thus Queyranne's algorithm applies.

1 Let P1 = {S}.
2 For i = 1, . . . , k − 1:

(a) For each Sj ∈ Pi , let P j
i be a

partition obtained by splitting

Sj using Queyranne's

algorithm.

(b) Set Pi+1 = argmin f (P j
i ).

Thm.

If P is the partition provided by the

greedy splitting algorithm, then

f (P ⩽

(
2− 2

k

)
f (Popt).



Submodular maximization

The maximization of submodular functions naturally comes up in applications.

The function is often assumed to be monotone, that is, f (X ) ⩽ f (Y ) for

X ⊆ Y ⊆ S .

⇒ When f is monotone, then the maximum is clearly attained on S .

Hence:

• Non-monotone submodular maximization (e.g. Max Cut).

• Monotone submodular maximization with constraints (e.g.

maxX⊆S,|X |⩽k f (X )).



Monotone submodular maximization

Greedy algorithm

1 Set S0 := ∅.
2 For i = 1, 2, . . . , k :

• Pick an element s maximizing f (s|Si−1).
• If the marginal value is non-negative, set Si := Si−1 + s.
• Otherwise stop.

Nemhauser, Wolsey, Fisher

The greedy algorithm gives a (1 − 1
e )-approximation for the problem

maxX⊆S,|X |⩽k f (X ), where f is monotone submodular.

Remark:

• When instead of |X | ⩽ k a matroid constraint X ∈ I is given, then the

greedy algorithm gives a 1
2 -approximation.



Further approaches

1 Partial enumeration: Guess the �rst few elements, then run the greedy

algorithm.

2 Local search: Switch up to t elements if the function value is decreased.

• 1/3-approximation for unconstrained (non-monotone) maximization

• Further results for matroid constraints.



Reading assignment

submodularity.org

http://submodularity.org


Exercises

1 Verify that the in-degree function of a directed graph is submodular. (2pts)

2 Prove the following statements. (4pts)

(a) The non-negative linear combination of submodular functions is submodular.

(b) The re�ection of a submodular function is submodular.

(c) The restriction of a submodular function is submodular.

(d) The contraction of a submodular function is submodular.

3 Provide examples showing that the maximum/minimum of two submodular functions

are not necessarily submodular. (2pts)

4 Give a 2-approximation for the Max Cut problem in undirected graphs, where the goal is

to �nd a set X with maximum degree. (2pts) [Hint: try to �nd a greedy approach.]
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