Optimization

Fall semester 2022/23

Kristóf Bérczi

Eötvös Loránd University
Institute of Mathematics
Department of Operations Research

Exam

Date: Dec. 17, 2022
Time: 9:00-11:00PM
Room: Online on Teams
Points: Max 30pts, Final result $=$ Points from hws + points from midterm

Evaluation:

$$
28 \text { or below - } 1
$$

29-35-2
36-42-3
43-49-4
50 and above - 5

Lecture 6: Submodular
functions

Motivation

Semantic segmentation:

Question: How can we map pixels to objects?

Motivation

Document summarization:

Question: How can we select representative sentences?

Motivation

Sensor placement:

Question: How to place the sensors optimally?

Motivation

Sensor placement:

Obs. Some placements are more effective than others.

Motivation

Sensor placement:

Obs. Adding a new sensor has "more value" in the first case than in the second case.

Discrete optimization

Setup: Given a set \mathcal{F} of feasible solutions and a function $f: \mathcal{F} \rightarrow \mathbb{R}$, solve

$$
\begin{aligned}
& \max \{f(X): X \in \mathcal{F}\} \\
& \min \{f(X): X \in \mathcal{F}\}
\end{aligned}
$$

Arbitrary set functions are hopelessly difficult to optimize...for 100 items, we should check 2^{100} sets!

Goal: Find sufficient conditions that make the problem tractable.
Recall: In the continuous case, $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ can be minimized if f is convex, and maximized if f is concave.
\Rightarrow Is it possible to find discrete counterparts?
Note: Many problems in real life applications assume a discrete setting, therefore it would be crucial to provide efficient algorithms.

Set functions

Let S be a set of size n. A set function is a function of the form $f: 2^{S} \rightarrow \mathbb{R}$, where 2^{S} denotes the set of all subsets of S.

Given a set $X \subseteq S$ and $s \in S$, we denote by

$$
\begin{aligned}
& X+s:=X \cup\{s\}, \\
& X-s:=X \backslash\{s\} .
\end{aligned}
$$

The marginal value of s w.r.t. X is

$$
f(s \mid X)=f(X+s)-f(X)
$$

Further properties:

- Monotone: if $X \subseteq Y \subseteq S$, then $f(X) \leqslant f(Y)$.
- Nonnegative: $f(X) \geqslant 0$ for $X \subseteq S$.
- Normalized: $f(\emptyset)=0$ (we will usually assume this throughout).

Modular functions

A set function $f: 2^{S} \rightarrow \mathbb{R}$ is modular if for all $X \subseteq S$ we have

$$
f(X)=\sum_{s \in X} f(s) .
$$

Intuitively: Associate a weight w_{s} with each $s \in S$, and set $f(X)=\sum_{s \in X} w_{s}$.
\Rightarrow Discrete analogue of linear functions.

Submodularity

A set function $f: 2^{S} \rightarrow \mathbb{R}$ is submodular if for all $X \subseteq Y \subseteq S$ and $s \in S \backslash Y$ we have

$$
f(s \mid X) \geqslant f(s \mid Y)
$$

Intuitively: The gain is more from a new element if we start with a smaller set.
Example: $f($ new car $\mid\{$ bike $\}) \geqslant f($ new car $\mid\{$ bike, car, private jet $\})$
[The marginal value of an element exhibits diminishing marginal returns.]

Remarks:

- f is supermodular if $-f$ is submodular
- f is modular if and only if it is both sub- and supermodular

Equivalent definition I

A set function $f: 2^{S} \rightarrow \mathbb{R}$ is submodular if and only if for all $X, Y \subseteq S$ we have

$$
f(X)+f(Y) \geqslant f(X \cap Y)+f(X \cup Y) .
$$

Proof.
\Leftarrow Let $X \subseteq Y \subseteq S$ and $s \in S \backslash Y$. Then $X \cup Y=Y$ and $X \cap Y=X$, hence

$$
f(s \mid X)=f(X+s)-f(X) \geqslant f(Y+s)-f(Y)=f(s \mid Y) .
$$

\Rightarrow Assume that f is submodular, and let $X \backslash Y=\left\{x_{1}, \ldots, x_{k}\right\}$. Furthermore, let $X_{i}:=\left\{x_{1}, \ldots, x_{i}\right\}$ for $i=1, \ldots, k$. Then

$$
\begin{gathered}
f\left((X \cap Y) \cup X_{1}\right)-f(X \cap Y) \geqslant f\left(Y \cup X_{1}\right)-f(Y) \\
f\left((X \cap Y) \cup X_{2}\right)-f\left((X \cap Y) \cup X_{1}\right) \geqslant f\left(Y \cup X_{2}\right)-f\left(Y \cup X_{1}\right) \\
\vdots \\
\frac{\left.\left.f\left((X \cap Y) \cup X_{k}\right\}\right)-f\left((X \cap Y) \cup X_{k-1}\right) \geqslant f\left(Y \cup X_{k}\right)-f\left(Y \cup X_{k-1}\right\}\right)}{}+f(X)-f(X \cap Y) \geqslant f(X \cup Y)-f(Y)
\end{gathered}
$$

Equivalent definition II

A set function $f: 2^{S} \rightarrow \mathbb{R}$ is supermodular if and only if for all $X, Y \subseteq S$ we have

$$
f(X)+f(Y) \leqslant f(X \cap Y)+f(X \cup Y)
$$

A set function $f: 2^{S} \rightarrow \mathbb{R}$ is modular if and only if for all $X, Y \subseteq S$ we have

$$
f(X)+f(Y)=f(X \cap Y)+f(X \cup Y)
$$

Remark: These functions play a crucial role in combinatorial optimization, and also in machine learning.

Example I - Coverage

Coverage function. Assume that for $s \in S$, we are given a measurable set A_{s}. Then

$$
f(X):=\left|\bigcup_{s \in X} A_{s}\right|
$$

is submodular.

Example II - Cuts in graphs

Cut function. Let $G=(V, E)$ be an undirected graph. Then $f(X):=d_{G}(X)$ is submodular.

In- and out-degrees. Let $D=(V, A)$ be an directed graph. Then the out-degree $f(X):=d_{D}^{+}(X)$ and the in-degree $f(X):=d_{D}^{-}(X)$ functions are submodular.

Example III - Entropy

Entropy. Let $\left(\xi_{s}\right)_{s \in S}$ be random variables with finite number of values in $\left(\mathcal{X}_{s}\right)_{s \in S}$, respectively. For a set $X=\left\{s_{1}, \ldots, s_{k}\right\} \subseteq S$, the joint entropy is

$$
f(X)=-\sum_{x_{s_{1}} \in \mathcal{X}_{s_{1}}} \cdots \sum_{x_{s_{k}} \in \mathcal{X}_{s_{k}}} P\left(x_{s_{1}}, \ldots, x_{s_{k}}\right) \log _{2} P\left(x_{s_{1}}, \ldots, x_{s_{k}}\right) .
$$

Then f is submodular.
Mutual information. $i(X):=f(X)+f(S \backslash X)-f(S)$ is submodular.

Properties

(1) Positive linear combinations: If f_{1}, \ldots, f_{k} are submodular and $\lambda_{i} \geqslant 0$ for $i=1, \ldots, k$, then $\sum_{i=1}^{k} f_{i}$ is submodular.
(2) Reflection: If f is submodular, then $g(X):=f(S \backslash X)$ is submodular.
(3) Restriction: If $X \subseteq S$ and f is submodular, then $g(Y):=f(X \cap Y)$ is submodular.
(4) Conditioning: If $X \subseteq S$ and f is submodular, then $g(Y):=f(X \cup Y)$ is submodular.
(5) Contraction: If $X \subseteq S$ and f is submodular, then $g(Y):=f(X \cup Y)-f(X)$ is submodular.
(6 Maximum/minimum: If f and g are submodular, then $\max \{f, g\}$ and $\min \{f, g\}$ are not necessarily submodular.

Submodularity and concavity

Given a set $X \subseteq S$, let 1_{X} denote its charasteristic vector, that is,

$$
\left(1_{X}\right)_{s}= \begin{cases}1 & \text { if } s \in X \\ 0 & \text { otherwise }\end{cases}
$$

A set function $f: 2^{S} \rightarrow \mathbb{R}$ can be thought of as a function defined on $\{0,1\}^{S}$. Recall: A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is concave if $f^{\prime}(x)$ is non-increasing in x. Now: A function $f:\{0,1\}^{S} \rightarrow \mathbb{R}$ is submodular if the "discrete derivative"

$$
\partial_{s} f(x)=f\left(x+e_{s}\right)-f(x)
$$

is non-increasing in x.
Furthermore: If a function $g: \mathbb{R}_{+} \rightarrow \mathbb{R}$ is concave, then $f(X):=g(|X|)$ is submodular.

Submodularity and convexity I

Let $f:\{0,1\}^{S} \rightarrow \mathbb{R}$ be a set function. For a vector $c \in \mathbb{R}^{S}$, let s_{1}, \ldots, s_{n} be an ordering of the elements S such that $c_{s_{1}} \geqslant \ldots \geqslant c_{s_{n}}$. Furthermore, let $S_{i}:=\left\{s_{1}, \ldots, s_{i}\right\}$ for $i=1, \ldots, n$. The Lovász-extension of f on c is

$$
\begin{aligned}
\hat{f}(c): & =c_{s_{n}} f\left(S_{n}\right)+\sum_{i=1}^{n-1}\left(c_{s_{i}}-c_{s_{i+1}}\right) f\left(S_{i}\right) \\
& =c_{s_{1}} f\left(S_{1}\right)+\sum_{i=2}^{n} c_{s_{i}}\left(f\left(S_{i}\right)-f\left(S_{i-1}\right)\right. \\
& =c_{s_{1}} f\left(S_{1}\right)+\sum_{i=2}^{n} c_{s_{i}} f\left(s_{i} \mid S_{i-1}\right) .
\end{aligned}
$$

\Rightarrow The sum of the marginal gains weighted by the components of c.

Submodularity and convexity II

- \hat{f} is an extension of f in the sense that $\hat{f}\left(1_{X}\right)=f(X)$ for $X \subseteq S$.
- \hat{f} is piecewise affine.
- \hat{f} is convex if and only if f is submodular.
- When restricted to $[0,1]^{S}, \hat{f}$ attains its minimum at one of the vertices, that is,

$$
\min _{c \in[0,1]^{S}} \hat{f}(c)=\min _{X \subseteq S} f(S) .
$$

Conclusion: Submodular functions share properties in common with both convex and concave functions. So, can we minimize/maximize them?

Submodular minimization I

Input: A submodular function $f: 2^{S} \rightarrow \mathbb{R}$.
Goal: Find arg $\min _{X \subseteq s} f(X)$.
By the properties of the Lovász extension, this is equivalent to finding

$$
\arg _{x \in[0,1]^{n}} \hat{f}(x)
$$

Thm.

The Lovász extension \hat{f} can be minimized using the Ellipsoid method in $O\left(n^{8} \log ^{2} n\right)$ time.

Remarks:

- $O\left(n^{6}\right)$ algorithm (Schrijver (2000), Iwata et al. (2001), Orlin (2009)).
- Faster algorithms in special cases (cuts, flows).

Submodular minimization II

(1) Symmetric submodular functions. The function f is symmetric if $f(X)=f(S \backslash X)$. In this case

$$
2 f(X)=f(X)+f(S \backslash X) \geqslant f(\emptyset)+f(S)=2 f(\emptyset)=0
$$

hence the minimum is trivially attained at S.
\Rightarrow Usually, we are interested in $\arg \min _{\emptyset \neq X \subset S} f(X)$.

Queyranne, 1998

If f is symmetric, then there is a fully combinatorial algorithm for solving $\arg \min _{\emptyset \neq X \subset S} f(X)$ in $O\left(n^{3}\right)$ time.
(2) Constrained setting. A simple constraint can make submodular minimization hard, e.g., $n^{1 / 2}$-hardness for $\min _{X \subseteq S,|X| \geqslant k} f(S)$.
\Rightarrow In such cases, one might be interested in finding approximate solutions.

Example - Clustering

Input: A set S.

Goal: Find a partition into k clusters S_{1}, \ldots, S_{k} such that

$$
g\left(S_{1}, \ldots, S_{k}\right)=\sum_{i=1}^{k} f\left(S_{i}\right)
$$

is minimized, where f is a submodular function (e.g. entropy or cut function).
Observation: For $k=2$, the function $g(X)=f(X)+f(S \backslash X)$ is symmetric and submodular, thus Queyranne's algorithm applies.
(1) Let $\mathcal{P}_{1}=\{S\}$.
(2) For $i=1, \ldots, k-1$:
(c) For each $S_{j} \in \mathcal{P}_{i}$, let \mathcal{P}_{i}^{j} be a partition obtained by splitting
S_{j} using Queyranne's algorithm.
(1) Set $\mathcal{P}_{i+1}=\arg \min f\left(\mathcal{P}_{i}^{j}\right)$.

Thm.

If \mathcal{P} is the partition provided by the greedy splitting algorithm, then

$$
f\left(\mathcal{P} \leqslant\left(2-\frac{2}{k}\right) f\left(\mathcal{P}_{o p t}\right)\right.
$$

Submodular maximization

The maximization of submodular functions naturally comes up in applications.
The function is often assumed to be monotone, that is, $f(X) \leqslant f(Y)$ for $X \subseteq Y \subseteq S$.
\Rightarrow When f is monotone, then the maximum is clearly attained on S.

Hence:

- Non-monotone submodular maximization (e.g. Max Cut).
- Monotone submodular maximization with constraints (e.g. $\left.\max _{X \subseteq s,|X| \leqslant k} f(X)\right)$.

Monotone submodular maximization

Greedy algorithm

(1) Set $S_{0}:=\emptyset$.
(2) For $i=1,2, \ldots, k$:

- Pick an element s maximizing $f\left(s \mid S_{i-1}\right)$.
- If the marginal value is non-negative, set $S_{i}:=S_{i-1}+s$.
- Otherwise stop.

Nemhauser, Wolsey, Fisher

The greedy algorithm gives a ($1-\frac{1}{e}$)-approximation for the problem $\max _{X \subseteq s,|X| \leqslant k} f(X)$, where f is monotone submodular.

Remark:

- When instead of $|X| \leqslant k$ a matroid constraint $X \in \mathcal{I}$ is given, then the greedy algorithm gives a $\frac{1}{2}$-approximation.

Further approaches

(1) Partial enumeration: Guess the first few elements, then run the greedy algorithm.
(2) Local search: Switch up to t elements if the function value is decreased.

- $1 / 3$-approximation for unconstrained (non-monotone) maximization
- Further results for matroid constraints.

Reading assignment

submodularity.org

Exercises

(1) Verify that the in-degree function of a directed graph is submodular. (2pts)
(2) Prove the following statements. (4pts)
(2) The non-negative linear combination of submodular functions is submodular.
(b) The reflection of a submodular function is submodular.
© The restriction of a submodular function is submodular.
(d) The contraction of a submodular function is submodular.
(3) Provide examples showing that the maximum/minimum of two submodular functions are not necessarily submodular. (2pts)
(4) Give a 2-approximation for the Max Cut problem in undirected graphs, where the goal is to find a set X with maximum degree. (2pts) [Hint: try to find a greedy approach.]

