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Lecture 5: Newton's method



Finding a root of a univariate function I

Input: A su�ciently di�erentiable function g : R → R.

Goal: Find one of its roots, that is, a point r s.t. g(r) = 0.

Setup: Zeroth- and �rst-order access to g and point x0 that is su�ciently close

to somme root of g .

Idea: Given a point x , consider the tangent through

(x , g(x)), and let x ′ be the intersection with the x-

axis.

x ′ = x − g(x)

g ′(x)

⇒ We hope to make progress in reaching a zero of g .



Finding a root of a univariate function II

Algorithm

1 Start with x0 ∈ R.

2 For t = 0, 1, . . . , let

xt+1 := xt −
g(xt)

g ′(xt)

Remarks:

• The method requires the di�erentiability of g .

• The convergence heavily depends on the starting point.

Example: Minimize f (x) := ax − log x over all positive x > 0.

Solution: Take g(x) := f ′(x), and �nd a root of g . As f is convex, the root of

g is an optimizer for f . We have

g(x) := f ′(x) = a− 1

x
.



Example I

While the solution is obviously 1
a , let us apply Newton's method.

Reason 1: To illustrate the method.

Reason 2: Early computers used Newton's method to compute the reciprocal

as it only involved addition, subtraction, and multiplication.

We have

xt+1 = xt −
g(xt)

g ′(xt)
= 2xt − ax2t .

De�ne et := 1− axt . Then

et+1 = e2t .

• If |e0| < 1, then et → 0.

• If |e0| = 1, then et = 1 for t ⩾ 1.

• If |e0| > 1, then et → ∞.

⇒

• If 0 < x0 <
2
a , then xt → 1

a .

• If x0 =
2
a , then xt = 0 for t ⩾ 1.

• If x0 >
2
a , then xt → −∞.



Example II

• If 0 < x0 <
2
a , then xt → 1

a .

• If x0 =
2
a , then xt = 0 for t ⩾ 1.

• If x0 >
2
a , then xt → −∞.

b

b

b

b

b

bb

x0 x1 x2 x3

⇒ The right starting point has a crucial impact on whether the algorithm

succeeds or fails.

Note: By modifying the function g , e.g. g(x) := x − 1
a , we get a di�erent

algorithm to compute 1
a . However, some of them might not make sense

(xt+1 = xt − g(xt)
g ′(xt)

= 1
a ), or might not be e�cient.



Convergence I

Recall: The distance et = 1− axt = a( 1a − xt) was squared at every iteration in

the example.

Question: Do we get quadratic convergence in general? YES!

Thm.

Suppose g : R → R is twice di�erentiable and its second derivative is contin-

uous, r ∈ R is a root of g , x0 ∈ R is a starting point, and x1 = x0 − g(x0)
g ′(x0)

.

Then |x1 − r | ⩽ M|x0 − r |2, where M = supξ∈(r ,x0)

∣∣∣ g ′′(ξ)
2g ′(x0)

∣∣∣.
The proof relies on the Mean value theorem, stating that if h : R → R is a

continuous function on the closed interval [a, b] and di�erentiable on the open

interval (a, b), then there exists c ∈ (a, b) s.t.

h′(c) =
h(b)− h(a)

b − a
.



Convergence II

Proof of the theorem.

By considering the second-order Taylor approximation of g around x0, we have

g(r) = g(x0) + (r − x0)g
′(x0) +

1

2
(r − x0)

2g ′′(ξ)

for some ξ ∈ (r , x0).

From the de�nition of x1, we know that g(x0) = g ′(x0)(x0 − x1). Furthermore,

g(r) = 0 as r is a root, hence

0 = g ′(x0)(x0 − x1) + (r − x0)g
′(x0) +

1

2
(r − x0)

2g ′′(ξ).

This implies

g ′(x0)(x1 − r) =
1

2
(r − x0)

2g ′′(ξ).

Therefore

|x1 − r | =
∣∣∣∣ g ′′(ξ)

2g ′(x0)

∣∣∣∣ |x0 − r |2 ⩽ M|x0 − r |2,

where M is as stated in the theorem.



Convergence III

Assuming M is a small constant (say M ⩽ 1, and this holds throughout the

procedure) and |x0 − r | < 1
2
, the theorem implies quadratically fast convergence

of xt to r .

Indeed, after t steps we have

|xt − r | ⩽ |x0 − r |2
t

⩽ 2−2t .

⇒ If t ≈ log log 1
ε , then |xt − r | ⩽ ε.

Summary: Newton's method is very e�cient!

See the Newton-Raphson method on GeoGebra!

https://www.geogebra.org/m/DGFGBJyU


Multivariate functions

Input: A su�ciently di�erentiable function g : Rn → Rn.

Goal: Find one of its roots, that is, a point r s.t. g(r) = 0.

[Be careful: here 0 denotes the all-zero vector.]

Setup: Zeroth- and �rst-order access to g and point x0 that is su�ciently close

to some root of g .

Original idea: Given a point x , de�ne

x ′ = x − g(x)

g ′(x)

⇒ Now g(x) is a vector while g ′(x) is the Jacobian matrix of g at x , i.e.

Jg (x) is the matrix of partial derivatives[
∂gi
∂xj

(x)

]
1⩽i,j⩽n

Hence the update rule becomes

xt+1 := xt − Jg (xt)
−1g(xt).



Newton's method for unconstrained optimization

What is the connection between convex programs and Newton's method?

Key observation: Minimizing a di�erentiable convex function in the

unconstrained setting is equivalent to �nding a root of its derivative.

Input: Su�ciently di�erentiable convex function f .

Goal: Find x∗ := argminx∈Rn f (x).

Recall:

• ∇f is a function from Rn to Rn.

• The Jacobian J∇f is the Hessian ∇2f .

⇒ The update rule is

xt+1 := xt − (∇2f (xt))
−1∇f (xt).

For ease of notation, we deine the Newton step at x to be

n(x) := −(∇2f (xt))
−1∇f (xt).

Hence xt+1 := xt + n(xt).



Newton's method as a second-order method

Suppose we would like to �nd a global minimum of f and x0 is our current

approximate solution. Let

f̃ (x) := f (x0) + ⟨x − x0,∇f (x0)⟩+
1

2
(x − x0)

T∇2f (x0)(x − x0).

Idea: Set the next point to be the minimizer of f̃ .

[Roughly, we hope that f̃ approximates f locally, and so the new point should

be an even better approximation to x∗.]

We have to �nd x0 := argminx∈Rn f̃ (x). Assuming that f is strictly convex (and

so ∇2f (x0) is invertible), this is equivalent to solving ∇f̃ (x) = 0, that is,

∇f (x0) +∇2f (x0)(x − x0) = 0,

leading to x1 = x0 − (∇2f (x0))
−1∇f (x0) = x0 + n(x0).

⇒ We recovered Newton's method!

Consequence: When applied to strictly convex quadratic functions, i.e. of the

form h(x) = xTMx + bT x for M ≻ 0, then after one iteration we land in the

unique minimizer.



Newton's method vs. gradient descent

Is Newton's method a �better� algorithm?

Pros: It uses the Hessian to perform the iterations, hence it is more powerful.

Cons: One iteration is now more costly, as a second-order oracle is needed.

More precisely, to compute xt+1, we need to solve the following system:(
∇2f (xt)

)
x = ∇f (xt).

• In general, this takes O(n3) time using Gaussian elimination, or O(nω)

using fast matrix multiplication.

• If the Hessian has a special form, e.g. it is Laplacian, then there are

nearly-linear time Laplacian solvers.



Newton-Eucledian condition

NE condition

Let f : Rn → R be a function, x∗ be one of its minimizers, x0 be arbitrary. We

say that the NE(M) condition is satis�ed for M > 0 if there exists an

Euclidean ball B(x∗,R) of radius R containing x0 and constants h, L > 0 such

that M ⩾ L
2h and

• for every x ∈ B(x∗,R), we have ∥∇2f (x)−1∥ ⩽ 1
h ,

• for every x , y ∈ B(x∗,R), we have ∥∇2f (x)−∇2f (y)∥ ⩽ L∥x − y∥2.

Here the norm of a matrix is the so-called spectral norm, de�ned as

∥A∥ := sup
x∈Rn

∥Ax∥2
∥x∥2

.

Thm.

Let f : Rn → R and x∗ be one of its minimizers. Let x0 be arbitrary and de�ne

x1 := x0 + n(x0). If the NE(M) condition is satis�ed, then

∥x1 − x∗∥2 ⩽ M∥x0 − x∗∥22.



Problem with the convergence I

Fact: The theorem is stated with respect to quantities based on Euclidean

norm ∥ · ∥2, which makes it hard to apply in many cases.

Example: For K1,K2 > 0 (large constants), consider

f (x1, x2) := − log(K1 − x1)− log(K1 + x1)− log

(
1

K2

− x2

)
− log

(
1

K2

+ x2

)
.



Problem with the convergence II

Now the Hessian of f is

∇2f (x) =

(
1

(K1−x1)2
+ 1

(K1+x1)2
0

0 1
( 1

K2
−x2)2

+ 1
( 1

K2
+x2)2

)
⇒ It can be veri�ed that M, which determines the quadratic convergence of

Newton's method, is at least Ω(K 2
1K

2
2 ). Therefore, even when the initial point

is close to the optimal solution x∗, the guarantee in the theorem is too weak to

imply that in one step the distance drops.

However, Newton's method does in fact converge rapidly to x∗!



Local norm I

Let f : Rn → R be a strictly convex function, i.e., the Hessian ∇2f (x) is

positive de�nite for every x ∈ Rn. We de�ne the local inner product at every

point x as

⟨u, v⟩x := uT∇2f (x)v for u, v ∈ Rn.

The corresponding local norm is

∥u∥x :=
√

uT∇2f (x)u for u ∈ Rn.

Recall: When deriving the gradient descent algorithm, we picked the direction

of steepest descent which is a solution to the following problem:

argmax
∥u∥=1

(−⟨∇f (x), u⟩).

The optimal direction w.r.t. the Euclidean norm ∥ · ∥ = ∥ · ∥2 is in the direction

−∇f (x).



Local norm II

Idea: What if instead maximize over all u of local norm 1? That is,

argmax
∥u∥x=1

(−⟨∇f (x), u⟩) = argmax
uT∇2f (x)u=1

(−⟨∇f (x), u⟩).

[We would like to capture the �shape� of f around x with our choice of the

norm, and our best guess is the quadratic term given by the Hessian.]

Using Cauchy-Schwarcz, the optimal solution is in the direction

−∇2f (x)−1∇f (x),

which is exactly the Newton step!

Indeed, set v := ∇2f (x)−1∇f (x), and observe that

−⟨∇f (x), u⟩ = −
〈
∇2f (x)

1

2 v ,∇2f (x)
1

2 u
〉

⩽
√
vT∇2f (x)v

√
uT∇2f (x)u

= ∥v∥x∥u∥x ,
and equality holds if and only if ∇2f (x)

1

2 u = −∇2f (x)
1

2 v . This is the same as

u = −v = −∇2f (x)−1∇f (x).



Conclusion

Newton's method can be interpreted as a steepest descent algorithm, where

the Newton step is the direction of steepest descent with respect to the local

norm.



Reading assignment

N. Vishnoi. Algorithms for convex optimization.

• Chapter 9

L.C. Lau. Convexity and optimization.

• Lecture 12

https://convex-optimization.github.io/
https://cs.uwaterloo.ca/~lapchi/cs798/notes.html


Exercises

1 Let F : K → R be a convex, di�erentiable function. Prove that DF (x , y) ⩾ 0. (1pt)

2 De�ne a function F for which DF (x , y) =∥ x − y ∥2
2
. (1pt)

3 Let F : K → R be a convex, di�erentiable function, and let x , y , z ∈ K . Prove that

⟨∇F (y)−∇F (z), y − x⟩ = DF (x , y) + DF (y , z)− DF (x , z). (1pt)

4 Let f (x) = x2 − a. Show that Newton's method leads to the recurrence

xn+1 = 1

2

(
xn + a

xn

)
. (1pt)

5 Let f : Rn → R a function and de�ne f̃ : Rn → R as f̃ (x) = f (Ax + b) where A ∈ Rn×n

is an invertible matrix and b ∈ Rn. Verify that if x0 moves to x1 by applying one step of

Newton's method with respect to f̃ , then y0 = Ax0 + b moves to y1 = Ax1 + b by

applying one step of Newton's method with respect to f . (2pts)

6 Let f : Rn → R be a strictly convex function. Prove that the function x 7→ DF (x , y) for

a �xed y ∈ Rn is strictly convex. (2pts)

7 Prove that for all p ∈ ∆n, DKL(p, p
1) ⩽ log n. Here p1 is the uniform probability

distribution with p1i = 1

n
for i = 1, . . . , n. (2pts)
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