Optimization

Fall semester 2022/23

Kristóf Bérczi,
Lydia Mendoza

Eötvös Loránd University
Institute of Mathematics
Department of Operations Research

Outline

Question 1, a

Consider the following integer programming problem.

$$
\begin{array}{r}
\max x_{1}+2 x_{2} \\
\text { s.t. }-3 x_{1}+4 x_{2} \leqslant 4 \\
3 x_{1}+2 x_{2} \leqslant 11 \\
2 x_{1}-x_{2} \leqslant 5 \\
x_{1}, x_{2} \geqslant 0 \\
x_{1}, x_{2} \text { integer } \tag{6}
\end{array}
$$

Use a figure to answer the following questions.
(a)What is the optimal cost of the linear programming relaxation? What is the optimal cost of the integer programming problem? (1pt)

Question 1, a

Consider the following integer programming problem.

$$
\begin{array}{r}
\max x_{1}+2 x_{2} \\
\text { s.t. }-3 x_{1}+4 x_{2} \leqslant 4 \\
3 x_{1}+2 x_{2} \leqslant 11 \\
2 x_{1}-x_{2} \leqslant 5 \\
x_{1}, x_{2} \geqslant 0 \\
x_{1}, x_{2} \text { integer } \tag{6}
\end{array}
$$

Use a figure to answer the following questions.
(a)What is the optimal cost of the linear programming relaxation? What is the optimal cost of the integer programming problem? (1pt)

Question 1, a

Consider the following integer programming problem.

$$
\begin{array}{r}
\max x_{1}+2 x_{2} \\
\text { s.t. }-3 x_{1}+4 x_{2} \leqslant 4 \\
3 x_{1}+2 x_{2} \leqslant 11 \\
2 x_{1}-x_{2} \leqslant 5 \\
x_{1}, x_{2} \geqslant 0 \\
x_{1}, x_{2} \text { integer } \tag{6}
\end{array}
$$

Use a figure to answer the following questions.
(a)What is the optimal cost of the linear programming relaxation? What is the optimal cost of the integer programming problem? (1pt)

Optimal relaxed solution: $x_{1}=2, x_{2}=2.5$. Optimal relaxed cost: 7 .

Question 1, a

Consider the following integer programming problem.

$$
\begin{array}{r}
\max x_{1}+2 x_{2} \\
\text { s.t. }-3 x_{1}+4 x_{2} \leqslant 4 \\
3 x_{1}+2 x_{2} \leqslant 11 \\
2 x_{1}-x_{2} \leqslant 5 \\
x_{1}, x_{2} \geqslant 0 \\
x_{1}, x_{2} \text { integer } \tag{6}
\end{array}
$$

Use a figure to answer the following questions.
(a)What is the optimal cost of the linear programming relaxation? What is the optimal cost of the integer programming problem? (1pt)

Optimal relaxed solution: $x_{1}=2, x_{2}=2.5$. Optimal relaxed cost: 7 .

Question 1, a

Consider the following integer programming problem.

$$
\begin{array}{r}
\max x_{1}+2 x_{2} \\
\text { s.t. }-3 x_{1}+4 x_{2} \leqslant 4 \\
3 x_{1}+2 x_{2} \leqslant 11 \\
2 x_{1}-x_{2} \leqslant 5 \\
x_{1}, x_{2} \geqslant 0 \\
x_{1}, x_{2} \text { integer } \tag{6}
\end{array}
$$

Use a figure to answer the following questions.
(a)What is the optimal cost of the linear programming relaxation? What is the optimal cost of the integer programming problem? (1pt)

Optimal relaxed solution: $x_{1}=2, x_{2}=2.5$. Optimal relaxed cost: 7 .
Optimal integer solution: $x_{1}=2, x_{2}=2$.
Optimal integer cost: 6.

Question 1, b

Consider the following integer programming problem.

$$
\begin{array}{r}
\max x_{1}+2 x_{2} \\
\text { s.t. }-3 x_{1}+4 x_{2} \leqslant 4 \\
3 x_{1}+2 x_{2} \leqslant 11 \\
2 x_{1}-x_{2} \leqslant 5 \\
x_{1}, x_{2} \geqslant 0 \\
x_{1}, x_{2} \text { integer } \tag{12}
\end{array}
$$

Use a figure to answer the following questions.
(b) What is the convex hull of the set of all solutions to the integer programming problem? (1pt)

Question 1, b

Consider the following integer programming problem.

$$
\begin{array}{r}
\max x_{1}+2 x_{2} \\
\text { s.t. }-3 x_{1}+4 x_{2} \leqslant 4 \\
3 x_{1}+2 x_{2} \leqslant 11 \\
2 x_{1}-x_{2} \leqslant 5 \\
x_{1}, x_{2} \geqslant 0 \\
x_{1}, x_{2} \text { integer } \tag{12}
\end{array}
$$

Use a figure to answer the following questions.
(b) What is the convex hull of the set of all solutions to the integer programming problem? (1pt)

Question 2, a

A company is manufacturing k different products using m resources. The amounts of available resources are given, together with the requirement of each of them for the different products. The selling price of the products are also known.
(a) Write up an IP model that aims at maximizing the total profit. (1pt)

Question 2, a

A company is manufacturing k different products using m resources. The amounts of available resources are given, together with the requirement of each of them for the different products. The selling price of the products are also known.
(a) Write up an IP model that aims at maximizing the total profit. (1pt)
(a):. $x_{i}=$ number of products of type i to produce, $i=1,2, \ldots, k$

Question 2, a

A company is manufacturing k different products using m resources. The amounts of available resources are given, together with the requirement of each of them for the different products. The selling price of the products are also known.
(a) Write up an IP model that aims at maximizing the total profit. (1pt)
(a):. $x_{i}=$ number of products of type i to produce, $i=1,2, \ldots, k$
$b_{j}=$ amount available for resource $j, j=1,2, \ldots, m$

Question 2, a

A company is manufacturing k different products using m resources. The amounts of available resources are given, together with the requirement of each of them for the different products. The selling price of the products are also known.
(a) Write up an IP model that aims at maximizing the total profit. (1pt)
(a):. $x_{i}=$ number of products of type i to produce, $i=1,2, \ldots, k$
$b_{j}=$ amount available for resource $j, j=1,2, \ldots, m$
$a_{i j}=$ requirement of resource j to produce product $i, i=1, \ldots, k, j=1, \ldots, m$

Question 2, a

A company is manufacturing k different products using m resources. The amounts of available resources are given, together with the requirement of each of them for the different products. The selling price of the products are also known.
(a) Write up an IP model that aims at maximizing the total profit. (1pt)
(a):. $x_{i}=$ number of products of type i to produce, $i=1,2, \ldots, k$
$b_{j}=$ amount available for resource $j, j=1,2, \ldots, m$
$a_{i j}=$ requirement of resource j to produce product $i, i=1, \ldots, k, j=1, \ldots, m$ $c_{j}=$ profit per unit of product $i j, i=1, \ldots, k$

Question 2, a

A company is manufacturing k different products using m resources. The amounts of available resources are given, together with the requirement of each of them for the different products. The selling price of the products are also known.
(a) Write up an IP model that aims at maximizing the total profit. (1pt)
(a):. $x_{i}=$ number of products of type i to produce, $i=1,2, \ldots, k$
$b_{j}=$ amount available for resource $j, j=1,2, \ldots, m$
$a_{i j}=$ requirement of resource j to produce product $i, i=1, \ldots, k, j=1, \ldots, m$ $c_{j}=$ profit per unit of product $i j, i=1, \ldots, k$

$$
\begin{array}{ll}
\max & \sum_{i=1}^{k} c_{i} x_{i} \\
\text { s.t. } & \sum_{i=1}^{k} a_{i j} x_{i} \leqslant b_{j} \quad \forall j=1,2, \ldots, m \\
& x_{i} \text { integer } \quad \forall i=1,2, \ldots, k \tag{15}
\end{array}
$$

Question 2, b

A company is manufacturing k different products using m resources. The amounts of available resources are given, together with the requirement of each of them for the different products. The selling price of the products are also known.
(b) Adjust the model if starting the production of product i requires a cost of s_{i}. (1pt)

Question 2, b

A company is manufacturing k different products using m resources. The amounts of available resources are given, together with the requirement of each of them for the different products. The selling price of the products are also known.
(b) Adjust the model if starting the production of product i requires a cost of s_{i}. (1pt)
(b): $y_{i}=$ auxiliar variable that detects whenever $x_{i}>0, i=1,2, \ldots, k$

Question 2, b

A company is manufacturing k different products using m resources. The amounts of available resources are given, together with the requirement of each of them for the different products. The selling price of the products are also known.
(b) Adjust the model if starting the production of product i requires a cost of s_{i}. (1pt)
(b): $y_{i}=$ auxiliar variable that detects whenever $x_{i}>0, i=1,2, \ldots, k$

$$
\begin{align*}
& \max \sum_{i=1}^{k} c_{i} x_{i}-s_{i} y_{i} \tag{16}\\
& \text { s.t. } \sum_{i=1}^{k} a_{i j} x_{i} \leqslant b_{j} \quad \forall j=1,2, \ldots, m \tag{17}\\
& x_{i} \leqslant M y_{i} \quad \forall i=1,2, \ldots, k \tag{18}\\
& x_{i} \text { integer } \quad \forall i=1,2, \ldots, k \tag{19}\\
& y_{i} \in\{0,1\} \quad \forall i=1,2, \ldots, k \tag{20}
\end{align*}
$$

Question 3

Consider the integer programming problem

$$
\begin{array}{ll}
\min & x_{n+1} \\
\text { s.t. } & 2 x_{1}+2 x_{2}+\cdots+2 x_{n}+x_{n+1}=n \\
& x_{i} \in\{0,1\}
\end{array}
$$

Show that any branch and bound algorithm that uses LP relaxations to compute lower bounds, and branches by setting a fractional variable to either zero or one, will require the enumeration of an exponential number of subproblems when n is odd. (2pts)

Question 3

Consider the integer programming problem

$$
\begin{array}{ll}
\min & x_{n+1} \\
\text { s.t. } & 2 x_{1}+2 x_{2}+\cdots+2 x_{n}+x_{n+1}=n \\
& x_{i} \in\{0,1\}
\end{array}
$$

Show that any branch and bound algorithm that uses LP relaxations to compute lower bounds, and branches by setting a fractional variable to either zero or one, will require the enumeration of an exponential number of subproblems when n is odd. (2pts)

When n is even, we can set
$x_{i}=\left\{\begin{array}{ll}1 & \text { if } i \text { is even } \\ 0 & \text { if } i \text { is odd }\end{array}\right.$.

Question 3

Consider the integer programming problem

$$
\begin{array}{ll}
\min & x_{n+1} \\
\text { s.t. } & 2 x_{1}+2 x_{2}+\cdots+2 x_{n}+x_{n+1}=n \\
& x_{i} \in\{0,1\}
\end{array}
$$

Show that any branch and bound algorithm that uses LP relaxations to compute lower bounds, and branches by setting a fractional variable to either zero or one, will require the enumeration of an exponential number of subproblems when n is odd. (2pts)

When n is even, we can set
$x_{i}=\left\{\begin{array}{ll}1 & \text { if } i \text { is even } \\ 0 & \text { if } i \text { is odd }\end{array}\right.$.
This doesn't work if n is odd.

Question 3

Consider the integer programming problem

$$
\begin{array}{ll}
\min & x_{n+1} \\
\text { s.t. } & 2 x_{1}+2 x_{2}+\cdots+2 x_{n}+x_{n+1}=n \\
& x_{i} \in\{0,1\}
\end{array}
$$

Show that any branch and bound algorithm that uses LP relaxations to compute lower bounds, and branches by setting a fractional variable to either zero or one, will require the enumeration of an exponential number of subproblems when n is odd. (2pts)

We construct the tree:
When n is even, we can set
$x_{i}=\left\{\begin{array}{ll}1 & \text { if } i \text { is even } \\ 0 & \text { if } i \text { is odd }\end{array}\right.$.
This doesn't work if n is odd.

1 node $=2^{0}$
2 nodes $=2^{1}$

4 nodes $=2^{2}$

Question 4

The pagination problem faced by a document processing program like ${ }^{\Delta T} T_{E} X_{c a n}$ be abstracted as follows. The text consists of a sequence $1, \ldots, n$ of n items (words, formulas, etc.). A page that starts with item i and ends with item j is assigned an attractiveness factor $c_{i j}$. Assuming that the factors $c_{i j}$ are available, we wish to maximize the total attractiveness of the paginated text. Develop an algorithm for this problem. (Hint: try to use recursive approach.) (2pts)

Question 4

The pagination problem faced by a document processing program like ${ }^{\Delta T} T_{E} X_{c a n}$ be abstracted as follows. The text consists of a sequence $1, \ldots, n$ of n items (words, formulas, etc.). A page that starts with item i and ends with item j is assigned an attractiveness factor $c_{i j}$. Assuming that the factors $c_{i j}$ are available, we wish to maximize the total attractiveness of the paginated text. Develop an algorithm for this problem. (Hint: try to use recursive approach.) (2pts)

Idea:
item $i \quad$ item $i+1 \quad \ldots$ item $k \left\lvert\, \begin{array}{lll}\text { item } k+1 & \ldots & \text { item } j\end{array}\right.$

Question 4

The pagination problem faced by a document processing program like ${ }^{\Delta} T_{E} X$ can be abstracted as follows. The text consists of a sequence $1, \ldots, n$ of n items (words, formulas, etc.). A page that starts with item i and ends with item j is assigned an attractiveness factor $c_{i j}$. Assuming that the factors $c_{i j}$ are available, we wish to maximize the total attractiveness of the paginated text. Develop an algorithm for this problem. (Hint: try to use recursive approach.) (2pts)

Idea:

item i	item $i+1$	\ldots	item k	item $k+1$	\ldots	item j	
item i	item $i+1$	\ldots	item $k \mid$	item $k+1$	\ldots	item j	item $j+1$,

Question 4

The pagination problem faced by a document processing program like ${ }^{\Delta} T_{E} X$ can be abstracted as follows. The text consists of a sequence $1, \ldots, n$ of n items (words, formulas, etc.). A page that starts with item i and ends with item j is assigned an attractiveness factor $c_{i j}$. Assuming that the factors $c_{i j}$ are available, we wish to maximize the total attractiveness of the paginated text. Develop an algorithm for this problem. (Hint: try to use recursive approach.) (2pts)

Idea:

item i	item $i+1$	\ldots	item $k \mid$	item $k+1$	\ldots	item j	
item i	item $i+1$	\ldots	item $k \mid$	item $k+1$	\ldots	item j	item $j+1$,
item i	item $i+1$	\ldots	item k	item $k+1$	\ldots	item j	\mid item $j+1$

Question 4

The pagination problem faced by a document processing program like ${ }^{\Delta T} T_{E} X c a n$ be abstracted as follows. The text consists of a sequence $1, \ldots, n$ of n items (words, formulas, etc.). A page that starts with item i and ends with item j is assigned an attractiveness factor $c_{i j}$. Assuming that the factors $c_{i j}$ are available, we wish to maximize the total attractiveness of the paginated text. Develop an algorithm for this problem. (Hint: try to use recursive approach.) (2pts)

Idea:
item i item $i+1 \quad \ldots$ item $k \left\lvert\, \begin{array}{llll} & \text { item } k+1 & \ldots & \text { item } j\end{array}\right.$
item $i \quad$ item $i+1 \quad \ldots$ item $k \left\lvert\, \begin{array}{lll} & \text { item } k+1 & \ldots \\ \text { item } j & \text { item } j+1 \text {, }\end{array}\right.$
item i item $i+1 \quad \ldots \quad$ item $k \quad$ item $k+1 \quad \ldots$ item $j \mid$ item $j+1$
$A[i, j]=$ the maximum attractiveness between item i and item $j, i \leqslant j$,
$i, j=1, \ldots, n$.

Question 4

The pagination problem faced by a document processing program like ${ }^{\Delta T} T_{E} X c a n$ be abstracted as follows. The text consists of a sequence $1, \ldots, n$ of n items (words, formulas, etc.). A page that starts with item i and ends with item j is assigned an attractiveness factor $c_{i j}$. Assuming that the factors $c_{i j}$ are available, we wish to maximize the total attractiveness of the paginated text. Develop an algorithm for this problem. (Hint: try to use recursive approach.) (2pts)

Idea:
item i item $i+1 \quad \ldots$ item $k \left\lvert\, \begin{array}{llll} & \text { item } k+1 & \ldots & \text { item } j\end{array}\right.$
item $i \quad$ item $i+1 \quad \ldots$ item $k \left\lvert\, \begin{array}{lll} & \text { item } k+1 & \ldots \\ \text { item } j & \text { item } j+1 \text {, }\end{array}\right.$
item $i \quad$ item $i+1 \quad \ldots \quad$ item $k \quad$ item $k+1 \quad \ldots$ item $j \mid$ item $j+1$
$A[i, j]=$ the maximum attractiveness between item i and item $j, i \leqslant j$,
$i, j=1, \ldots, n$.
Our solution is given by $A[1, n]$.

Question 4

The pagination problem faced by a document processing program like ${ }^{\Delta} T_{E} X c a n$ be abstracted as follows. The text consists of a sequence $1, \ldots, n$ of n items (words, formulas, etc.). A page that starts with item i and ends with item j is assigned an attractiveness factor $c_{i j}$. Assuming that the factors $c_{i j}$ are available, we wish to maximize the total attractiveness of the paginated text. Develop an algorithm for this problem. (Hint: try to use recursive approach.) (2pts)

Idea:
item i item $i+1 \quad \ldots$ item $k \left\lvert\, \begin{array}{llll} & \text { item } k+1 & \ldots & \text { item } j\end{array}\right.$
item $i \quad$ item $i+1 \quad \ldots$ item $k \left\lvert\, \begin{array}{lll} & \text { item } k+1 & \ldots \\ \text { item } j & \text { item } j+1 \text {, }\end{array}\right.$
item $i \quad$ item $i+1 \quad \ldots \quad$ item $k \quad$ item $k+1 \quad \ldots$ item $j \mid$ item $j+1$
$A[i, j]=$ the maximum attractiveness between item i and item $j, i \leqslant j$,
$i, j=1, \ldots, n$.
Our solution is given by $A[1, n]$.
$A[1,1]=c_{1,1}$

Question 4

The pagination problem faced by a document processing program like ${ }^{\Delta T} T_{E} X c a n$ be abstracted as follows. The text consists of a sequence $1, \ldots, n$ of n items (words, formulas, etc.). A page that starts with item i and ends with item j is assigned an attractiveness factor $c_{i j}$. Assuming that the factors $c_{i j}$ are available, we wish to maximize the total attractiveness of the paginated text. Develop an algorithm for this problem. (Hint: try to use recursive approach.) (2pts)

Idea:
item i item $i+1 \quad \ldots$ item $k \left\lvert\, \begin{array}{lll} & \text { item } k+1 & \ldots \\ \text { item } j\end{array}\right.$

item $i \quad$ item $i+1 \quad \ldots \quad$ item $k \quad$ item $k+1 \quad \ldots$ item $j \mid$ item $j+1$
$A[i, j]=$ the maximum attractiveness between item i and item $j, i \leqslant j$,
$i, j=1, \ldots, n$.
Our solution is given by $A[1, n]$.
$A[1,1]=c_{1,1}$
$A[i, j+1]=\max \left\{A[i, j-1], c_{j-1, j}\right\}$

