Optimization

Fall semester 2022/23

Kristóf Bérczi, Lydia Mendoza

Eötvös Loránd University Institute of Mathematics Department of Operations Research

Outline

Set 2

Use a f

Consider the following integer programming problem.

$$\begin{array}{rl} \max x_{1}+2x_{2} & (1) \\ \text{s.t.} & -3x_{1}+4x_{2} \leqslant 4 & (2) \\ & 3x_{1}+2x_{2} \leqslant 11 & (3) \\ & 2x_{1}-x_{2} \leqslant 5 & (4) \\ & x_{1},x_{2} \geqslant 0 & (5) \\ & x_{1},x_{2} \text{ integer} & (6) \\ \hline \text{figure to answer the following} \end{array}$$

questions. (a)What is the optimal cost of the linear programming relaxation? What is the optimal cost of the integer programming problem? (1pt)

Consider the following integer programming problem.

$$\begin{array}{rl} \max x_{1}+2x_{2} & (1) \\ \text{s.t.} & -3x_{1}+4x_{2}\leqslant 4 & (2) \\ & 3x_{1}+2x_{2}\leqslant 11 & (3) \\ & 2x_{1}-x_{2}\leqslant 5 & (4) \\ & x_{1},x_{2}\geqslant 0 & (5) \\ & x_{1},x_{2} \text{ integer} & (6) \\ \text{Use a figure to answer the following} \end{array}$$

questions.

(a)What is the optimal cost of the linear programming relaxation? What is the optimal cost of the integer programming problem? (1pt)

S.

Consider the following integer programming problem.

$$\begin{array}{rl} \max x_{1}+2x_{2} & (1) \\ \text{t.} & -3x_{1}+4x_{2} \leqslant 4 & (2) \\ & 3x_{1}+2x_{2} \leqslant 11 & (3) \\ & 2x_{1}-x_{2} \leqslant 5 & (4) \\ & x_{1},x_{2} \geqslant 0 & (5) \end{array}$$

 x_1, x_2 integer (6)

Use a figure to answer the following questions.

(a)What is the optimal cost of the linear programming relaxation? What is the optimal cost of the integer programming problem? (1pt) Optimal relaxed solution: $x_1 = 2$, $x_2 = 2.5$. Optimal relaxed cost: 7.

S.

Consider the following integer programming problem.

$$\max x_{1} + 2x_{2} \qquad (1)$$

it. $-3x_{1} + 4x_{2} \leq 4 \qquad (2)$
 $3x_{1} + 2x_{2} \leq 11 \qquad (3)$
 $2x_{1} - x_{2} \leq 5 \qquad (4)$
 $x_{1}, x_{2} \geq 0 \qquad (5)$

 x_1, x_2 integer (6)

Use a figure to answer the following questions.

(a)What is the optimal cost of the linear programming relaxation? What is the optimal cost of the integer programming problem? (1pt) Optimal relaxed solution: $x_1 = 2$, $x_2 = 2.5$. Optimal relaxed cost: 7.

Consider the following integer programming problem.

$$\max x_{1} + 2x_{2} \qquad (1)$$

s.t. $-3x_{1} + 4x_{2} \leq 4 \qquad (2)$
 $3x_{1} + 2x_{2} \leq 11 \qquad (3)$
 $2x_{1} - x_{2} \leq 5 \qquad (4)$
 $x_{1}, x_{2} \geq 0 \qquad (5)$

Use a figure to answer the following questions.

(a)What is the optimal cost of the linear programming relaxation? What is the optimal cost of the integer programming problem? (1pt) Optimal relaxed solution: $x_1 = 2$, $x_2 = 2.5$. Optimal relaxed cost: 7. Optimal integer solution: $x_1 = 2, x_2 = 2$. Optimal integer cost: 6. X2 $3x_1 + 2x_2 \leq 11$.5) $-3x_1 + 4x_2 \leq$ X_1

Consider the following integer programming problem.

$\max x_1 + 2x_2$	(7)	
s.t. $-3x_1 + 4x_2 \leqslant 4$	(8)	
$3x_1 + 2x_2 \leqslant 11$	(9)	
$2x_1 - x_2 \leqslant 5$	(10)	
$x_1, x_2 \geqslant 0$	(11)	
x_1, x_2 integer	(12)	
Use a figure to answer the following		
questions.		
(b) What is the convex hull o	f the	
set of all solutions to the integer pro-		
gramming problem? (1pt)		

Consider the following integer programming problem.

$\max x_1 + 2x_2$	(7)	
s.t. $-3x_1 + 4x_2 \leqslant 4$	(8)	
$3x_1 + 2x_2 \leqslant 11$	(9)	
$2x_1 - x_2 \leqslant 5$	(10)	
$x_1, x_2 \geqslant 0$	(11)	
x_1, x_2 integer	(12)	
Use a figure to answer the following		
questions.		
(b) What is the convex hull of the		
set of all solutions to the integer pro-		
gramming problem? (1pt)		

(a) Write up an IP model that aims at maximizing the total profit. (1pt)

(a) Write up an IP model that aims at maximizing the total profit. (1pt)

(a):. x_i = number of products of type *i* to produce, i = 1, 2, ..., k

(a) Write up an IP model that aims at maximizing the total profit. (1pt)

(a):. x_i = number of products of type *i* to produce, i = 1, 2, ..., k b_j = amount available for resource j, j = 1, 2, ..., m

(a) Write up an IP model that aims at maximizing the total profit. (1pt)

(a):. x_i = number of products of type *i* to produce, i = 1, 2, ..., k b_j = amount available for resource *j*, j = 1, 2, ..., m a_{ij} = requirement of resource *j* to produce product *i*, i = 1, ..., k, j = 1, ..., m

(a) Write up an IP model that aims at maximizing the total profit. (1pt)

(a):. x_i = number of products of type *i* to produce, i = 1, 2, ..., k b_j = amount available for resource *j*, j = 1, 2, ..., m a_{ij} = requirement of resource *j* to produce product *i*, i = 1, ..., k, j = 1, ..., m c_j = profit per unit of product *i j*, i = 1, ..., k

(a) Write up an IP model that aims at maximizing the total profit. (1pt)

(a):. x_i = number of products of type *i* to produce, i = 1, 2, ..., k b_j = amount available for resource *j*, j = 1, 2, ..., m a_{ij} = requirement of resource *j* to produce product *i*, i = 1, ..., k, j = 1, ..., m c_j = profit per unit of product *i j*, i = 1, ..., k

$$\max \sum_{i=1}^{\kappa} c_i x_i \tag{13}$$

s.t.
$$\sum_{i=1}^{n} a_{ij} x_i \leqslant b_j \quad \forall j = 1, 2, \dots, m$$
(14)

 x_i integer $\forall i = 1, 2, \dots, k$ (15)

(b) Adjust the model if starting the production of product *i* requires a cost of s_i . (1pt)

(b) Adjust the model if starting the production of product *i* requires a cost of s_i . (1pt)

(b): y_i = auxiliar variable that detects whenever $x_i > 0$, i = 1, 2, ..., k

(b) Adjust the model if starting the production of product *i* requires a cost of s_i . (1pt)

(b): $y_i = \text{auxiliar variable that detects whenever } x_i > 0, i = 1, 2, ..., k$ $\max \sum_{i=1}^{k} c_i x_i - s_i y_i \qquad (16)$ s.t. $\sum_{i=1}^{k} a_{ij} x_i \leq b_j \quad \forall j = 1, 2, ..., m \qquad (17)$ $x_i \leq M y_i \quad \forall i = 1, 2, ..., k \qquad (18)$ $x_i \text{ integer} \quad \forall i = 1, 2, ..., k \qquad (19)$ $y_i \in \{0, 1\} \quad \forall i = 1, 2, ..., k \qquad (20)$

Consider the integer programming problem $\min x_{n+1}$ s.t. $2x_1 + 2x_2 + \dots + 2x_n + x_{n+1} = n$ $x_i \in \{0, 1\}$ Show that any branch and bound algorithm that uses LP relaxations to compute lower bounds, and branches by setting a fractional variable to either zero or one, will require the enumeration of an exponential number of subproblems when nis odd. (2pts)

Consider the integer programming problem $\min x_{n+1}$ s.t. $2x_1 + 2x_2 + \dots + 2x_n + x_{n+1} = n$ $x_i \in \{0, 1\}$ Show that any branch and bound algorithm that uses LP relaxations to compute lower bounds, and branches by setting a fractional variable to either zero or one, will require the enumeration of an exponential number of subproblems when nis odd. (2pts)

```
When n is even, we can set

x_i = \begin{cases} 1 & \text{if } i \text{ is even} \\ 0 & \text{if } i \text{ is odd} \end{cases}.
```

Consider the integer programming problem $\min x_{n+1}$ s.t. $2x_1 + 2x_2 + \dots + 2x_n + x_{n+1} = n$ $x_i \in \{0, 1\}$ Show that any branch and bound algorithm that uses LP relaxations to compute lower bounds, and branches by setting a fractional variable to either zero or one, will require the enumeration of an exponential number of subproblems when nis odd. (2pts)

```
When n is even, we can set

x_i = \begin{cases} 1 & \text{if } i \text{ is even} \\ 0 & \text{if } i \text{ is odd} \end{cases}
This doesn't work if n is
```

odd.

Consider the integer programming problem $\min x_{n+1}$ s.t. $2x_1 + 2x_2 + \dots + 2x_n + x_{n+1} = n$ $x_i \in \{0, 1\}$ Show that any branch and bound algorithm that uses LP relaxations to compute lower bounds, and branches by setting a fractional variable to either zero or one, will require the enumeration of an exponential number of subproblems when *n* is odd. (2pts)

The pagination problem faced by a document processing program like LATEXcan be abstracted as follows. The text consists of a sequence $1, \ldots, n$ of n items (words, formulas, etc.). A page that starts with item *i* and ends with item *j* is assigned an attractiveness factor c_{ij} . Assuming that the factors c_{ij} are available, we wish to maximize the total attractiveness of the paginated text. Develop an algorithm for this problem. (Hint: try to use recursive approach.) (2pts)

The pagination problem faced by a document processing program like LATEXcan be abstracted as follows. The text consists of a sequence $1, \ldots, n$ of n items (words, formulas, etc.). A page that starts with item *i* and ends with item *j* is assigned an attractiveness factor c_{ij} . Assuming that the factors c_{ij} are available, we wish to maximize the total attractiveness of the paginated text. Develop an algorithm for this problem. (Hint: try to use recursive approach.) (2pts)

The pagination problem faced by a document processing program like LATEXcan be abstracted as follows. The text consists of a sequence $1, \ldots, n$ of n items (words, formulas, etc.). A page that starts with item *i* and ends with item *j* is assigned an attractiveness factor c_{ij} . Assuming that the factors c_{ij} are available, we wish to maximize the total attractiveness of the paginated text. Develop an algorithm for this problem. (Hint: try to use recursive approach.) (2pts)

Idea:item iitem i+1item iitem k+1item iitem i+1item k+1item k+1

The pagination problem faced by a document processing program like LATEXcan be abstracted as follows. The text consists of a sequence $1, \ldots, n$ of n items (words, formulas, etc.). A page that starts with item *i* and ends with item *j* is assigned an attractiveness factor c_{ij} . Assuming that the factors c_{ij} are available, we wish to maximize the total attractiveness of the paginated text. Develop an algorithm for this problem. (Hint: try to use recursive approach.) (2pts)

Idea:
item iitem i+1...item kitem k+1...item jitem iitem i+1...item kitem k+1...item j+1,item iitem i+1...item kitem k+1...item j

The pagination problem faced by a document processing program like LATEXcan be abstracted as follows. The text consists of a sequence $1, \ldots, n$ of n items (words, formulas, etc.). A page that starts with item *i* and ends with item *j* is assigned an attractiveness factor c_{ij} . Assuming that the factors c_{ij} are available, we wish to maximize the total attractiveness of the paginated text. Develop an algorithm for this problem. (Hint: try to use recursive approach.) (2pts)

Idea: item i item i+1 ... item k item k+1 ... item j item i item i+1 ... item k item k+1 ... item j item j+1, item i item i+1 ... item k item k+1 ... item j item j+1 A[i,j] = the maximum attractiveness between item i and item j, $i \leq j$, i, j = 1, ..., n.

The pagination problem faced by a document processing program like LATEXcan be abstracted as follows. The text consists of a sequence $1, \ldots, n$ of n items (words, formulas, etc.). A page that starts with item *i* and ends with item *j* is assigned an attractiveness factor c_{ij} . Assuming that the factors c_{ij} are available, we wish to maximize the total attractiveness of the paginated text. Develop an algorithm for this problem. (Hint: try to use recursive approach.) (2pts)

Idea: item i item i+1 ... item k item k+1 ... item j item i item i+1 ... item k item k+1 ... item j item j+1, item i item i+1 ... item k item k+1 ... item j item j+1 A[i,j] = the maximum attractiveness between item i and item j, $i \leq j$, i, j = 1, ..., n. Our solution is given by A[1, n]. The pagination problem faced by a document processing program like LATEXcan be abstracted as follows. The text consists of a sequence $1, \ldots, n$ of n items (words, formulas, etc.). A page that starts with item *i* and ends with item *j* is assigned an attractiveness factor c_{ij} . Assuming that the factors c_{ij} are available, we wish to maximize the total attractiveness of the paginated text. Develop an algorithm for this problem. (Hint: try to use recursive approach.) (2pts)

Idea: item i item i+1 ... item k item k+1 ... item j item i item i+1 ... item k item k+1 ... item j item j+1, item i item i+1 ... item k item k+1 ... item j item j+1 A[i,j] = the maximum attractiveness between item i and item j, $i \leq j$, i, j = 1, ..., n. Our solution is given by A[1, n]. $A[1, 1] = c_{1,1}$ The pagination problem faced by a document processing program like LATEXcan be abstracted as follows. The text consists of a sequence $1, \ldots, n$ of n items (words, formulas, etc.). A page that starts with item *i* and ends with item *j* is assigned an attractiveness factor c_{ij} . Assuming that the factors c_{ij} are available, we wish to maximize the total attractiveness of the paginated text. Develop an algorithm for this problem. (Hint: try to use recursive approach.) (2pts)

Idea: item i item i+1 ... item k | item k+1 ... item j item i item i+1 ... item k | item k+1 ... item j item j+1, item i item i+1 ... item k item k+1 ... item j | item j+1 A[i,j] = the maximum attractiveness between item i and item j, $i \leq j$, i,j = 1, ..., n. Our solution is given by A[1, n]. $A[1,1] = c_{1,1}$ $A[i,j+1] = \max\{A[i,j-1], c_{j-1,j}\}$