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Set 1



Question 1

Bob would like to write down the system
3x + 2y + 4z = 8, (1)

−3y ⩽ 3, (2)

x − 3z ⩾ 10, (3)

min x − y , (4)
but his keyboard is missing the symbols = and ⩾, and the letter i is not working.
Reformulate the problem only using ⩽ and maximization. (1pt)

Recall. We can write 3x + 2y + 4z = 8 using the two inequalities
3x + 2y + 4z ⩽ 8 and 3x + 2y + 4z ⩾ 8.

3x + 2y + 4z ⩽ 8

−3x − 2y − 4z ⩽ −8

− 3y ⩽ 3

− x + 3z ⩽ −10

max−x + y
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Question 2

Prove that the system Ax ⩽ 0, x ≫ 0 admits a solution if and only if Ax ⩽

0, x ⩾ 1 has one. (1pt)

(⇐). A x be a feasible solution to Ax ⩽ 0, x ⩾ 1 it is clearly a solution to
Ax ⩾ 0, x ≫ 0.

(⇒). Let x = (x1, x2, . . . , xn) be a feasible solution to Ax ⩾ 0, x ≫ 0. Consider
the value 1

mini xi
.

Let us define x ′ := x
mini xi

= ( x1
mini xi

, x2
mini xi

, · · · , xn
mini xi

).

We show that x ′ is a feasible solution:

Since xj ⩾ mini xi , then x ′j =
xj

mini xi
⩾ 1 for any j = 1, · · · , n.

Also, Ax ′ = A x
mini xi

⩽ 0 as Ax ⩽ 0 and 1
mini xi

⩾ 0
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Question 3

Consider the problem

x2 ⩽ 4, (5)

x1 + x2 ⩽ 6, (6)

2x1 + x2 ⩽ 10 (7)

x1, x2 ⩾ 0 (8)

Represent these con-
straints on the plane.
Find a point that max-
imizes x1+2x2. (2pts)

x1

x2

(0, 4)
x2 ⩽ 4

(0, 6)

(6, 0)

x1 + x2 ⩽ 6

(0, 10)

(5, 0)

2x1 + x2 ⩽ 10

(1, 2)

(2, 4)

Optimal solution: x1 = 2, x2 = 4.
Optimal value: x1 + 2x2 = 2 + 2 ∗ 4 = 10.
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Question 3: Strong Duality Thm

Consider the problem

x2 ⩽ 4, (9)

x1 + x2 ⩽ 6, (10)

2x1 + x2 ⩽ 10 (11)

x1, x2 ⩾ 0 (12)

Represent these con-
straints on the plane.
Find a point that max-
imizes x1+2x2. (2pts)

Optimal primal solution: x1 = 2, x2 = 4.
Optima primal value: x1 + 2x2 = 2 + 2 ∗ 4 = 10.

The dual of this problem is:

min 4y1 + 6y2 + 10y3

s.t. y2 + 2y3 ⩾ 1

y1 + y2 + y3 ⩾ 2

y1, y2, y3 ⩾ 0

Optimal dual solution: y1 = 1, y2 = 1, y3 = 0.
Optimal dual value= 10.

max = min as the Strong Duality theorem states.
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Question 4

Verify the ‘only if’ direction in the general form of Farkas’ lemma. (1pt)

We want to show that
If there is no y = (y0, y1) s.t.

y0P + y1Q = 0 (13)

y0A+ y1B ⩾ 0 (14)

y1 ⩾ 0 (15)

y0b0 + y1b1 < 0 (16)

then
there exists x = (x0, x1) s.t.

Px0 + Ax1 = b0 (17)

Qx0 + Bx1 ⩽ b1 (18)

x1 ⩾ 0 (19)

We show that at most one of
x = (x0, x1) and y = (y0, y1) exists.
Suppose by the contrary that both

x = (x0, x1) and y = (y0, y1) exists.
Then

0 > y0b0 + y1b1

= y0(Px0 + Ax1) + y1b1

⩾ y0(Px0 + Ax1) + y1(Qx0 + Bx1)

= (y0P + y1Q)x0 + (y0A+ y1B)x1

= 0 + (y0A+ y1B)x1

⩾ 0,

which is a contradiction.
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Question 5

Assume that both (P) and (D) has a solution in the duality theorem. Prove
that weak duality holds, that is, max ⩽ min. (1pt)

Primal:
max c0x0 + c1x1 (20)

s.t. Px0 + Ax1 = b0 (21)

Qx0 + Bx1 ⩽ b1 (22)

x1 ⩾ 0 (23)

Dual:
min y0b0 + y1b1 (24)

s.t. y0P + y1Q = c0 (25)

y0A+ y1B ⩾ c1 (26)

y1 ⩾ 0 (27)

Let x = (x0, x1) be a solution of (P), and y = (y0, y1) a solution of (D).

c0x0 + c1x1 = (y0P + y1Q)x0 + c1x1

⩽ (y0P + y1Q)x0 + (y0A+ y1B)x1

= y0(Px0 + Ax1) + y1(Qx0 + Bx1)

= y0b0 + y1(Qx0 + Bx1)

⩽ y0b0 + y1b1
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Question 6

Let A ∈ Rm×n, b ∈ Rm, and c1, . . . , ck ∈ Rn Formulate the following problem
as an LP: Ax = b, x ⩾ 0,min f (x) where f (x) := max{c1x , . . . , ckx}. (1pt)

By the definition of f , we have that cix ⩽ f (x) := max{c1x , . . . , ckx} holds for
any i = 1, · · · , k .

Let us define the new variable z .

Ax = b,

x ⩾ 0

c1x ⩽ z

...

ckx ⩽ z

min z



Question 6

Let A ∈ Rm×n, b ∈ Rm, and c1, . . . , ck ∈ Rn Formulate the following problem
as an LP: Ax = b, x ⩾ 0,min f (x) where f (x) := max{c1x , . . . , ckx}. (1pt)

By the definition of f , we have that cix ⩽ f (x) := max{c1x , . . . , ckx} holds for
any i = 1, · · · , k .

Let us define the new variable z .

Ax = b,

x ⩾ 0

c1x ⩽ z

...

ckx ⩽ z

min z



Question 6

Let A ∈ Rm×n, b ∈ Rm, and c1, . . . , ck ∈ Rn Formulate the following problem
as an LP: Ax = b, x ⩾ 0,min f (x) where f (x) := max{c1x , . . . , ckx}. (1pt)

By the definition of f , we have that cix ⩽ f (x) := max{c1x , . . . , ckx} holds for
any i = 1, · · · , k .

Let us define the new variable z .

Ax = b,

x ⩾ 0

c1x ⩽ z

...

ckx ⩽ z

min z



Question 6

Let A ∈ Rm×n, b ∈ Rm, and c1, . . . , ck ∈ Rn Formulate the following problem
as an LP: Ax = b, x ⩾ 0,min f (x) where f (x) := max{c1x , . . . , ckx}. (1pt)

By the definition of f , we have that cix ⩽ f (x) := max{c1x , . . . , ckx} holds for
any i = 1, · · · , k .

Let us define the new variable z .

Ax = b,

x ⩾ 0

c1x ⩽ z

...

ckx ⩽ z

min z



Question 6

Let A ∈ Rm×n, b ∈ Rm, and c1, . . . , ck ∈ Rn Formulate the following problem
as an LP: Ax = b, x ⩾ 0,min f (x) where f (x) := max{c1x , . . . , ckx}. (1pt)

By the definition of f , we have that cix ⩽ f (x) := max{c1x , . . . , ckx} holds for
any i = 1, · · · , k .

Let us define the new variable z .

Ax = b,

x ⩾ 0

c1x ⩽ z

...

ckx ⩽ z

min z



Question 6

Let A ∈ Rm×n, b ∈ Rm, and c1, . . . , ck ∈ Rn Formulate the following problem
as an LP: Ax = b, x ⩾ 0,min f (x) where f (x) := max{c1x , . . . , ckx}. (1pt)

By the definition of f , we have that cix ⩽ f (x) := max{c1x , . . . , ckx} holds for
any i = 1, · · · , k .

Let us define the new variable z .

Ax = b,

x ⩾ 0

c1x ⩽ z

...

ckx ⩽ z

min z



Question 7 (1/3)

Reduce the following systems of inequalities to each other (in the sense that if
we can solve one of them, then we can solve any of them):

(I): Ax = b

x ⩾ 0
(II): Bx ⩽ b

x ⩾ 0
(III): Qx ⩽ b

(IV): Px0 = b0

Qx1 ⩽ b1
Write up Farkas’ lemma for all of them. (3pts)

We know how to solve (I), and we would like to solve (II).

Let us define A′ := [B Id ] where Id is the identity matrix, b′ = b, and
x ′ = (x , s) ⩾ 0 where s are the slack variables.

Then A′x ′ = b′, x ′ ⩾ 0 is equivalent to (II).

We know how to solve (II), and we would like to solve (III).

Let us define B ′ := [Q − Q], b′ = b, and x ′ = (x+, x−) ⩾ 0.

Then B ′x ′ ⩽ b′, x ′ ⩾ 0 is equivalent to (III).
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Question 7 (2/3)

(I): Ax = b

x ⩾ 0
(II): Bx ⩽ b

x ⩾ 0
(III): Qx ⩽ b

(IV): Px0 = b0

Qx1 ⩽ b1

We know how to solve (III), and we would like to solve (IV).

Let us define Q ′ :=

 P 0
-P 0
0 Q

, b = (b0,−b0, b1), and x ′ = (x0, x1).

Then Q ′x ′ ⩽ b′, is equivalent to (IV).

We know how to solve (IV), and we would like to solve (I).

Let us define P ′ := A, Q ′ = −Id , b′0 = b , b′1 = 0, and x ′0 = x , x ′1 = x .

Then P ′x ′0 = b′0, Q
′x ′1 ⩽ b′1, is equivalent to (IV).
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Question 7 (3/3)

We write the Farkas’ Lemma for each problem:

(I). There exists x s.t. Ax = b

x ⩾ 0

⇐⇒ there is no y s.t. yA ⩾ 0

yb < 0

(II). There exists x s.t. Bx ⩽ b

x ⩾ 0

⇐⇒ there is no y s.t. yB ⩾ 0

y ⩾ 0

yb < 0

(III). There exists x s.t. Qx ⩽ b ⇐⇒ there is no y s.t. yQ = 0

y ⩾ 0

yb < 0

(IV). There exists x s.t. Px0 = b0

Qx1 ⩽ b1

⇐⇒ there is no y s.t. y0P + y1Q = 0

y1 ⩾ 0

y0b0 + y1b1 < 0
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