Optimization

Fall semester 2022/23

Kristóf Bérczi,
Lydia Mendoza

Eötvös Loránd University
Institute of Mathematics
Department of Operations Research

Set 1

Question 1

Bob would like to write down the system

$$
\begin{align*}
& 3 x+2 y+4 z=8 \tag{1}\\
&-3 y \leqslant 3 \tag{2}\\
& x-3 z \geqslant 10 \tag{3}\\
& \min x-y \tag{4}
\end{align*}
$$

but his keyboard is missing the symbols $=$ and \geqslant, and the letter i is not working. Reformulate the problem only using \leqslant and maximization. (1pt)

Question 1

Bob would like to write down the system

$$
\begin{align*}
& 3 x+2 y+4 z=8 \tag{1}\\
&-3 y \leqslant 3 \tag{2}\\
& x-3 z \geqslant 10 \tag{3}\\
& \min x-y \tag{4}
\end{align*}
$$

but his keyboard is missing the symbols $=$ and \geqslant, and the letter i is not working. Reformulate the problem only using \leqslant and maximization. (1pt)

Recall. We can write $3 x+2 y+4 z=8$ using the two inequalities $3 x+2 y+4 z \leqslant 8$ and $3 x+2 y+4 z \geqslant 8$.

Question 1

Bob would like to write down the system

$$
\begin{align*}
& 3 x+2 y+4 z=8 \tag{1}\\
&-3 y \leqslant 3 \tag{2}\\
& x-3 z \geqslant 10 \tag{3}\\
& \min x-y \tag{4}
\end{align*}
$$

but his keyboard is missing the symbols $=$ and \geqslant, and the letter i is not working. Reformulate the problem only using \leqslant and maximization. (1pt)

Recall. We can write $3 x+2 y+4 z=8$ using the two inequalities $3 x+2 y+4 z \leqslant 8$ and $3 x+2 y+4 z \geqslant 8$.

$$
\begin{gathered}
3 x+2 y+4 z \leqslant 8 \\
-3 x-2 y-4 z \leqslant-8
\end{gathered}
$$

Question 1

Bob would like to write down the system

$$
\begin{align*}
& 3 x+2 y+4 z=8 \tag{1}\\
&-3 y \leqslant 3 \tag{2}\\
& x-3 z \geqslant 10 \tag{3}\\
& \min x-y \tag{4}
\end{align*}
$$

but his keyboard is missing the symbols $=$ and \geqslant, and the letter i is not working. Reformulate the problem only using \leqslant and maximization. (1pt)

Recall. We can write $3 x+2 y+4 z=8$ using the two inequalities $3 x+2 y+4 z \leqslant 8$ and $3 x+2 y+4 z \geqslant 8$.

$$
\begin{aligned}
3 x+2 y+4 z & \leqslant 8 \\
-3 x-2 y-4 z & \leqslant-8 \\
-3 y & \leqslant 3
\end{aligned}
$$

Question 1

Bob would like to write down the system

$$
\begin{align*}
& 3 x+2 y+4 z=8 \tag{1}\\
&-3 y \leqslant 3 \tag{2}\\
& x-3 z \geqslant 10 \tag{3}\\
& \min x-y \tag{4}
\end{align*}
$$

but his keyboard is missing the symbols $=$ and \geqslant, and the letter i is not working. Reformulate the problem only using \leqslant and maximization. (1pt)

Recall. We can write $3 x+2 y+4 z=8$ using the two inequalities $3 x+2 y+4 z \leqslant 8$ and $3 x+2 y+4 z \geqslant 8$.

$$
\begin{aligned}
3 x+2 y+4 z & \leqslant 8 \\
-3 x-2 y-4 z & \leqslant-8 \\
-3 y & \leqslant 3 \\
-x+3 z & \leqslant-10
\end{aligned}
$$

Question 1

Bob would like to write down the system

$$
\begin{align*}
& 3 x+2 y+4 z=8 \tag{1}\\
&-3 y \leqslant 3 \tag{2}\\
& x-3 z \geqslant 10 \tag{3}\\
& \min x-y \tag{4}
\end{align*}
$$

but his keyboard is missing the symbols $=$ and \geqslant, and the letter i is not working. Reformulate the problem only using \leqslant and maximization. (1pt)

Recall. We can write $3 x+2 y+4 z=8$ using the two inequalities $3 x+2 y+4 z \leqslant 8$ and $3 x+2 y+4 z \geqslant 8$.

$$
\begin{aligned}
3 x+2 y+4 z & \leqslant 8 \\
-3 x-2 y-4 z & \leqslant-8 \\
-3 y & \leqslant 3 \\
-x+3 z & \leqslant-10 \\
\max -x+y &
\end{aligned}
$$

Question 2

Prove that the system $A x \leqslant 0, x \gg 0$ admits a solution if and only if $A x \leqslant$ $0, x \geqslant 1$ has one. (1pt)

Question 2

Prove that the system $A x \leqslant 0, x \gg 0$ admits a solution if and only if $A x \leqslant$ $0, x \geqslant 1$ has one. (1pt)
(\Leftarrow). A x be a feasible solution to $A x \leqslant 0, x \geqslant 1$ it is clearly a solution to $A x \geqslant 0, x \gg 0$.

Question 2

Prove that the system $A x \leqslant 0, x \gg 0$ admits a solution if and only if $A x \leqslant$ $0, x \geqslant 1$ has one. (1pt)
(\Leftarrow). A x be a feasible solution to $A x \leqslant 0, x \geqslant 1$ it is clearly a solution to $A x \geqslant 0, x \gg 0$.
(\Rightarrow). Let $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a feasible solution to $A x \geqslant 0, x \gg 0$. Consider the value $\frac{1}{\min _{i} x_{i}}$.

Question 2

Prove that the system $A x \leqslant 0, x \gg 0$ admits a solution if and only if $A x \leqslant$ $0, x \geqslant 1$ has one. (1pt)
(\Leftarrow). A x be a feasible solution to $A x \leqslant 0, x \geqslant 1$ it is clearly a solution to $A x \geqslant 0, x \gg 0$.
(\Rightarrow). Let $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a feasible solution to $A x \geqslant 0, x \gg 0$. Consider the value $\frac{1}{\min _{i} x_{i}}$.

Let us define $x^{\prime}:=\frac{x}{\min _{i} x_{i}}=\left(\frac{x_{1}}{\min _{i} x_{i}}, \frac{x_{2}}{\min _{i} x_{i}}, \cdots, \frac{x_{n}}{\min _{i} x_{i}}\right)$.

Question 2

Prove that the system $A x \leqslant 0, x \gg 0$ admits a solution if and only if $A x \leqslant$ $0, x \geqslant 1$ has one. (1pt)
(\Leftarrow). A x be a feasible solution to $A x \leqslant 0, x \geqslant 1$ it is clearly a solution to $A x \geqslant 0, x \gg 0$.
(\Rightarrow). Let $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a feasible solution to $A x \geqslant 0, x \gg 0$. Consider the value $\frac{1}{\min _{i} x_{i}}$.

Let us define $x^{\prime}:=\frac{x}{\min _{i} x_{i}}=\left(\frac{x_{1}}{\min _{i} x_{i}}, \frac{x_{2}}{\min _{i} x_{i}}, \cdots, \frac{x_{n}}{\min _{i} x_{i}}\right)$.
We show that x^{\prime} is a feasible solution:

Question 2

Prove that the system $A x \leqslant 0, x \gg 0$ admits a solution if and only if $A x \leqslant$ $0, x \geqslant 1$ has one. (1pt)
(\Leftarrow). A x be a feasible solution to $A x \leqslant 0, x \geqslant 1$ it is clearly a solution to $A x \geqslant 0, x \gg 0$.
(\Rightarrow). Let $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a feasible solution to $A x \geqslant 0, x \gg 0$. Consider the value $\frac{1}{\min _{i} x_{i}}$.

Let us define $x^{\prime}:=\frac{x}{\min _{i} x_{i}}=\left(\frac{x_{1}}{\min _{i} x_{i}}, \frac{x_{2}}{\min _{i} x_{i}}, \cdots, \frac{x_{n}}{\min _{i} x_{i}}\right)$.
We show that x^{\prime} is a feasible solution:
Since $x_{j} \geqslant \min _{i} x_{i}$, then $x_{j}^{\prime}=\frac{x_{j}}{\min _{i} x_{i}} \geqslant 1$ for any $j=1, \cdots, n$.

Question 2

Prove that the system $A x \leqslant 0, x \gg 0$ admits a solution if and only if $A x \leqslant$ $0, x \geqslant 1$ has one. (1 pt)
(\Leftarrow). A x be a feasible solution to $A x \leqslant 0, x \geqslant 1$ it is clearly a solution to $A x \geqslant 0, x \gg 0$.
(\Rightarrow). Let $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a feasible solution to $A x \geqslant 0, x \gg 0$. Consider the value $\frac{1}{\min _{i} x_{i}}$.

Let us define $x^{\prime}:=\frac{x}{\min _{i} x_{i}}=\left(\frac{x_{1}}{\min _{i} x_{i}}, \frac{x_{2}}{\min _{i} x_{i}}, \cdots, \frac{x_{n}}{\min _{i} x_{i}}\right)$.
We show that x^{\prime} is a feasible solution:
Since $x_{j} \geqslant \min _{i} x_{i}$, then $x_{j}^{\prime}=\frac{x_{j}}{\min _{i} x_{i}} \geqslant 1$ for any $j=1, \cdots, n$.
Also, $A x^{\prime}=A \frac{x}{\min _{i} x_{i}} \leqslant 0$ as $A x \leqslant 0$ and $\frac{1}{\min _{i} x_{i}} \geqslant 0$

Question 3

Consider the problem

$$
\begin{align*}
x_{2} & \leqslant 4, \\
x_{1}+x_{2} & \leqslant 6, \tag{6}\\
2 x_{1}+x_{2} & \leqslant 10 \tag{7}\\
x_{1}, x_{2} & \geqslant 0 \tag{8}
\end{align*}
$$

Represent these constraints on the plane.
Find a point that maximizes $x_{1}+2 x_{2}$. (2pts)

$(6,0)$

Question 3

Consider the problem

$$
\begin{align*}
x_{2} & \leqslant 4, \\
x_{1}+x_{2} & \leqslant 6, \\
2 x_{1}+x_{2} & \leqslant 10 \tag{7}\\
x_{1}, x_{2} & \geqslant 0 \tag{8}
\end{align*}
$$

Represent these constraints on the plane.
Find a point that maximizes $x_{1}+2 x_{2}$. (2pts)

Question 3

Consider the problem

$$
x_{2} \leqslant 4,
$$

$$
x_{1}+x_{2} \leqslant 6,
$$

$$
\begin{equation*}
2 x_{1}+x_{2} \leqslant 10 \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
x_{1}, x_{2} \geqslant 0 \tag{8}
\end{equation*}
$$

Represent these constraints on the plane.
Find a point that maximizes $x_{1}+2 x_{2}$. (2pts)

Question 3

Consider the problem

$$
\begin{align*}
x_{2} & \leqslant 4, \tag{5}\\
x_{1}+x_{2} & \leqslant 6, \tag{6}\\
2 x_{1}+x_{2} & \leqslant 10 \tag{7}\\
x_{1}, x_{2} & \geqslant 0 \tag{8}
\end{align*}
$$

Represent these constraints on the plane.
Find a point that maximizes $x_{1}+2 x_{2}$. (2pts)

Question 3

Consider the problem

$$
\begin{align*}
x_{2} & \leqslant 4, \tag{5}\\
x_{1}+x_{2} & \leqslant 6, \tag{6}\\
2 x_{1}+x_{2} & \leqslant 10 \tag{7}\\
x_{1}, x_{2} & \geqslant 0 \tag{8}
\end{align*}
$$

Represent these constraints on the plane.
Find a point that maximizes $x_{1}+2 x_{2}$. (2pts)

Question 3

Optimal solution: $x_{1}=2, x_{2}=4$.

 Optimal value: $x_{1}+2 x_{2}=2+2 * 4=10$.Consider the problem

$$
\begin{align*}
x_{2} & \leqslant 4, \tag{5}\\
x_{1}+x_{2} & \leqslant 6, \tag{6}\\
2 x_{1}+x_{2} & \leqslant 10 \tag{7}\\
x_{1}, x_{2} & \geqslant 0 \tag{8}
\end{align*}
$$

Represent these constraints on the plane.
Find a point that maximizes $x_{1}+2 x_{2}$. (2pts)

Question 3: Strong Duality Thm

Optimal primal solution: $x_{1}=2, x_{2}=4$.
Consider the problem
Optima primal value: $x_{1}+2 x_{2}=2+2 * 4=10$.

$$
\begin{align*}
x_{2} & \leqslant 4, \\
x_{1}+x_{2} & \leqslant 6, \tag{10}\\
2 x_{1}+x_{2} & \leqslant 10 \tag{11}\\
x_{1}, x_{2} & \geqslant 0 \tag{12}
\end{align*}
$$

Represent these constraints on the plane.
Find a point that maximizes $x_{1}+2 x_{2}$. (2pts)

Question 3: Strong Duality Thm

Optimal primal solution: $x_{1}=2, x_{2}=4$.
Consider the problem

$$
\begin{align*}
x_{2} & \leqslant 4, \\
x_{1}+x_{2} & \leqslant 6, \tag{10}\\
2 x_{1}+x_{2} & \leqslant 10 \tag{11}\\
x_{1}, x_{2} & \geqslant 0 \tag{12}
\end{align*}
$$

Represent these constraints on the plane.
Find a point that maximizes $x_{1}+2 x_{2}$. (2pts)

The dual of this problem is:

$$
\begin{array}{ll}
\min & 4 y_{1}+6 y_{2}+10 y_{3} \\
\text { s.t. } & y_{2}+2 y_{3} \geqslant 1 \\
& y_{1}+y_{2}+y_{3} \geqslant 2 \\
& y_{1}, y_{2}, y_{3} \geqslant 0
\end{array}
$$

Question 3: Strong Duality Thm

Optimal primal solution: $x_{1}=2, x_{2}=4$.
Consider the problem

$$
\begin{align*}
x_{2} & \leqslant 4, \quad(9) \\
x_{1}+x_{2} & \leqslant 6, \quad(10) \tag{10}\\
2 x_{1}+x_{2} & \leqslant 10 \tag{11}\\
x_{1}, x_{2} & \geqslant 0 \tag{12}
\end{align*}
$$

Represent these constraints on the plane.
Find a point that maximizes $x_{1}+2 x_{2}$. (2pts)

The dual of this problem is:

$$
\begin{array}{cc}
\min & 4 y_{1}+6 y_{2}+10 y_{3} \\
\text { s.t. } & y_{2}+2 y_{3} \geqslant 1 \\
& y_{1}+y_{2}+y_{3} \geqslant 2 \\
& y_{1}, y_{2}, y_{3} \geqslant 0
\end{array}
$$

Optimal dual solution: $y_{1}=1, y_{2}=1, y_{3}=0$.
Optimal dual value $=10$.

Question 3: Strong Duality Thm

Optimal primal solution: $x_{1}=2, x_{2}=4$.

Consider the problem

$$
\begin{align*}
x_{2} & \leqslant 4, \tag{9}\\
x_{1}+x_{2} & \leqslant 6, \tag{10}\\
2 x_{1}+x_{2} & \leqslant 10 \tag{11}\\
x_{1}, x_{2} & \geqslant 0 \tag{12}
\end{align*}
$$

Represent these constraints on the plane.
Find a point that maximizes $x_{1}+2 x_{2}$. (2pts)

Optima primal value: $x_{1}+2 x_{2}=2+2 * 4=10$.
The dual of this problem is:

$$
\begin{array}{ll}
\min & 4 y_{1}+6 y_{2}+10 y_{3} \\
\text { s.t. } & y_{2}+2 y_{3} \geqslant 1 \\
& y_{1}+y_{2}+y_{3} \geqslant 2 \\
& y_{1}, y_{2}, y_{3} \geqslant 0
\end{array}
$$

Optimal dual solution: $y_{1}=1, y_{2}=1, y_{3}=0$.
Optimal dual value $=10$.
$\max =\min$ as the Strong Duality theorem states.

Question 4

Verify the 'only if' direction in the general form of Farkas' lemma. (1pt)

Question 4

Verify the 'only if' direction in the general form of Farkas' lemma. (1pt)
We want to show that
If there is no $y=\left(y_{0}, y_{1}\right)$ s.t.

$$
\begin{align*}
y_{0} P+y_{1} Q & =0 \tag{13}\\
y_{0} A+y_{1} B & \geqslant 0 \tag{14}\\
y_{1} & \geqslant 0 \tag{15}\\
y_{0} b_{0}+y_{1} b_{1} & <0 \tag{16}
\end{align*}
$$

then

$$
\begin{array}{r}
\text { there exists } x=\left(x_{0}, x_{1}\right) \text { s.t. } \\
P x_{0}+A x_{1}=b_{0} \\
Q x_{0}+B x_{1} \leqslant b_{1} \\
x_{1} \geqslant 0 \tag{19}
\end{array}
$$

Question 4

Verify the 'only if' direction in the general form of Farkas' lemma. (1pt)

We want to show that
If there is no $y=\left(y_{0}, y_{1}\right)$ s.t.

$$
\begin{align*}
y_{0} P+y_{1} Q & =0 \tag{13}\\
y_{0} A+y_{1} B & \geqslant 0 \tag{14}\\
y_{1} & \geqslant 0 \tag{15}\\
y_{0} b_{0}+y_{1} b_{1} & <0 \tag{16}
\end{align*}
$$

then

$$
\begin{array}{r}
\text { there exists } x=\left(x_{0}, x_{1}\right) \text { s.t. } \\
P x_{0}+A x_{1}=b_{0} \\
Q x_{0}+B x_{1} \leqslant b_{1} \\
x_{1} \geqslant 0 \tag{19}
\end{array}
$$

We show that at most one of $x=\left(x_{0}, x_{1}\right)$ and $y=\left(y_{0}, y_{1}\right)$ exists.
Suppose by the contrary that both
$x=\left(x_{0}, x_{1}\right)$ and $y=\left(y_{0}, y_{1}\right)$ exists.
Then

Question 4

Verify the 'only if' direction in the general form of Farkas' lemma. (1pt)

We want to show that
If there is no $y=\left(y_{0}, y_{1}\right)$ s.t.

$$
\begin{array}{r}
y_{0} P+y_{1} Q=0 \\
y_{0} A+y_{1} B \geqslant 0 \\
y_{1} \geqslant 0 \\
y_{0} b_{0}+y_{1} b_{1}<0 \tag{16}
\end{array}
$$

then

$$
\begin{align*}
& \text { there exists } x=\left(x_{0}, x_{1}\right) \text { s.t. } \\
& \qquad \begin{array}{r}
P x_{0}+A x_{1}=b_{0} \\
Q x_{0}+B x_{1} \leqslant b_{1} \\
x_{1} \geqslant 0
\end{array} \tag{17}
\end{align*}
$$

We show that at most one of $x=\left(x_{0}, x_{1}\right)$ and $y=\left(y_{0}, y_{1}\right)$ exists.
Suppose by the contrary that both
$x=\left(x_{0}, x_{1}\right)$ and $y=\left(y_{0}, y_{1}\right)$ exists.
Then

$$
0>y_{0} b_{0}+y_{1} b_{1}
$$

Question 4

Verify the 'only if' direction in the general form of Farkas' lemma. (1pt)

We want to show that
If there is no $y=\left(y_{0}, y_{1}\right)$ s.t.

$$
\begin{array}{r}
y_{0} P+y_{1} Q=0 \\
y_{0} A+y_{1} B \geqslant 0 \\
y_{1} \geqslant 0 \\
y_{0} b_{0}+y_{1} b_{1}<0 \tag{16}
\end{array}
$$

then

$$
\begin{align*}
& \text { there exists } x=\left(x_{0}, x_{1}\right) \text { s.t. } \\
& \qquad \begin{array}{r}
P x_{0}+A x_{1}=b_{0} \\
Q x_{0}+B x_{1} \leqslant b_{1} \\
x_{1} \geqslant 0
\end{array} \tag{17}
\end{align*}
$$

We show that at most one of $x=\left(x_{0}, x_{1}\right)$ and $y=\left(y_{0}, y_{1}\right)$ exists.
Suppose by the contrary that both
$x=\left(x_{0}, x_{1}\right)$ and $y=\left(y_{0}, y_{1}\right)$ exists.
Then

$$
\begin{aligned}
0 & >y_{0} b_{0}+y_{1} b_{1} \\
& =y_{0}\left(P x_{0}+A x_{1}\right)+y_{1} b_{1}
\end{aligned}
$$

Question 4

Verify the 'only if' direction in the general form of Farkas' lemma. (1pt)

We want to show that
If there is no $y=\left(y_{0}, y_{1}\right)$ s.t.

$$
\begin{array}{r}
y_{0} P+y_{1} Q=0 \\
y_{0} A+y_{1} B \geqslant 0 \\
y_{1} \geqslant 0 \\
y_{0} b_{0}+y_{1} b_{1}<0 \tag{16}
\end{array}
$$

then
there exists $x=\left(x_{0}, x_{1}\right)$ s.t.

$$
\begin{array}{r}
P x_{0}+A x_{1}=b_{0} \\
Q x_{0}+B x_{1} \leqslant b_{1} \\
x_{1} \geqslant 0 \tag{19}
\end{array}
$$

We show that at most one of $x=\left(x_{0}, x_{1}\right)$ and $y=\left(y_{0}, y_{1}\right)$ exists.
Suppose by the contrary that both
$x=\left(x_{0}, x_{1}\right)$ and $y=\left(y_{0}, y_{1}\right)$ exists.
Then

$$
\begin{aligned}
0 & >y_{0} b_{0}+y_{1} b_{1} \\
& =y_{0}\left(P x_{0}+A x_{1}\right)+y_{1} b_{1} \\
& \geqslant y_{0}\left(P x_{0}+A x_{1}\right)+y_{1}\left(Q x_{0}+B x_{1}\right)
\end{aligned}
$$

Question 4

Verify the 'only if' direction in the general form of Farkas' lemma. (1pt)

We want to show that
If there is no $y=\left(y_{0}, y_{1}\right)$ s.t.

$$
\begin{array}{r}
y_{0} P+y_{1} Q=0 \\
y_{0} A+y_{1} B \geqslant 0 \\
y_{1} \geqslant 0 \\
y_{0} b_{0}+y_{1} b_{1}<0 \tag{16}
\end{array}
$$

then
there exists $x=\left(x_{0}, x_{1}\right)$ s.t.

$$
\begin{array}{r}
P x_{0}+A x_{1}=b_{0} \\
Q x_{0}+B x_{1} \leqslant b_{1} \\
x_{1} \geqslant 0 \tag{19}
\end{array}
$$

We show that at most one of $x=\left(x_{0}, x_{1}\right)$ and $y=\left(y_{0}, y_{1}\right)$ exists.
Suppose by the contrary that both
$x=\left(x_{0}, x_{1}\right)$ and $y=\left(y_{0}, y_{1}\right)$ exists.
Then

$$
\begin{aligned}
0 & >y_{0} b_{0}+y_{1} b_{1} \\
& =y_{0}\left(P x_{0}+A x_{1}\right)+y_{1} b_{1} \\
& \geqslant y_{0}\left(P x_{0}+A x_{1}\right)+y_{1}\left(Q x_{0}+B x_{1}\right) \\
& =\left(y_{0} P+y_{1} Q\right) x_{0}+\left(y_{0} A+y_{1} B\right) x_{1}
\end{aligned}
$$

Question 4

Verify the 'only if' direction in the general form of Farkas' lemma. (1pt)

We want to show that
If there is no $y=\left(y_{0}, y_{1}\right)$ s.t.

$$
\begin{array}{r}
y_{0} P+y_{1} Q=0 \\
y_{0} A+y_{1} B \geqslant 0 \\
y_{1} \geqslant 0 \\
y_{0} b_{0}+y_{1} b_{1}<0 \tag{16}
\end{array}
$$

then

there exists $x=\left(x_{0}, x_{1}\right)$ s.t.

$$
\begin{array}{r}
P x_{0}+A x_{1}=b_{0} \\
Q x_{0}+B x_{1} \leqslant b_{1} \\
x_{1} \geqslant 0 \tag{19}
\end{array}
$$

We show that at most one of $x=\left(x_{0}, x_{1}\right)$ and $y=\left(y_{0}, y_{1}\right)$ exists.
Suppose by the contrary that both
$x=\left(x_{0}, x_{1}\right)$ and $y=\left(y_{0}, y_{1}\right)$ exists.
Then

$$
\begin{aligned}
0 & >y_{0} b_{0}+y_{1} b_{1} \\
& =y_{0}\left(P x_{0}+A x_{1}\right)+y_{1} b_{1} \\
& \geqslant y_{0}\left(P x_{0}+A x_{1}\right)+y_{1}\left(Q x_{0}+B x_{1}\right) \\
& =\left(y_{0} P+y_{1} Q\right) x_{0}+\left(y_{0} A+y_{1} B\right) x_{1} \\
& =0+\left(y_{0} A+y_{1} B\right) x_{1}
\end{aligned}
$$

Question 4

Verify the 'only if' direction in the general form of Farkas' lemma. (1pt)

We want to show that
If there is no $y=\left(y_{0}, y_{1}\right)$ s.t.

$$
\begin{array}{r}
y_{0} P+y_{1} Q=0 \\
y_{0} A+y_{1} B \geqslant 0 \\
y_{1} \geqslant 0 \\
y_{0} b_{0}+y_{1} b_{1}<0 \tag{16}
\end{array}
$$

then

there exists $x=\left(x_{0}, x_{1}\right)$ s.t.

$$
\begin{array}{r}
P x_{0}+A x_{1}=b_{0} \\
Q x_{0}+B x_{1} \leqslant b_{1} \\
x_{1} \geqslant 0 \tag{19}
\end{array}
$$

We show that at most one of $x=\left(x_{0}, x_{1}\right)$ and $y=\left(y_{0}, y_{1}\right)$ exists.
Suppose by the contrary that both
$x=\left(x_{0}, x_{1}\right)$ and $y=\left(y_{0}, y_{1}\right)$ exists.
Then

$$
\begin{aligned}
0 & >y_{0} b_{0}+y_{1} b_{1} \\
& =y_{0}\left(P x_{0}+A x_{1}\right)+y_{1} b_{1} \\
& \geqslant y_{0}\left(P x_{0}+A x_{1}\right)+y_{1}\left(Q x_{0}+B x_{1}\right) \\
& =\left(y_{0} P+y_{1} Q\right) x_{0}+\left(y_{0} A+y_{1} B\right) x_{1} \\
& =0+\left(y_{0} A+y_{1} B\right) x_{1} \\
& \geqslant 0
\end{aligned}
$$

Question 4

Verify the 'only if' direction in the general form of Farkas' lemma. (1pt)

We want to show that
If there is no $y=\left(y_{0}, y_{1}\right)$ s.t.

$$
\begin{array}{r}
y_{0} P+y_{1} Q=0 \\
y_{0} A+y_{1} B \geqslant 0 \\
y_{1} \geqslant 0 \\
y_{0} b_{0}+y_{1} b_{1}<0 \tag{16}
\end{array}
$$

then

there exists $x=\left(x_{0}, x_{1}\right)$ s.t.

$$
\begin{array}{r}
P x_{0}+A x_{1}=b_{0} \\
Q x_{0}+B x_{1} \leqslant b_{1} \\
x_{1} \geqslant 0 \tag{19}
\end{array}
$$

We show that at most one of $x=\left(x_{0}, x_{1}\right)$ and $y=\left(y_{0}, y_{1}\right)$ exists.
Suppose by the contrary that both
$x=\left(x_{0}, x_{1}\right)$ and $y=\left(y_{0}, y_{1}\right)$ exists.
Then

$$
\begin{aligned}
0 & >y_{0} b_{0}+y_{1} b_{1} \\
& =y_{0}\left(P x_{0}+A x_{1}\right)+y_{1} b_{1} \\
& \geqslant y_{0}\left(P x_{0}+A x_{1}\right)+y_{1}\left(Q x_{0}+B x_{1}\right) \\
& =\left(y_{0} P+y_{1} Q\right) x_{0}+\left(y_{0} A+y_{1} B\right) x_{1} \\
& =0+\left(y_{0} A+y_{1} B\right) x_{1} \\
& \geqslant 0
\end{aligned}
$$

Question 4

Verify the 'only if' direction in the general form of Farkas' lemma. (1pt)

We want to show that
If there is no $y=\left(y_{0}, y_{1}\right)$ s.t.

$$
\begin{array}{r}
y_{0} P+y_{1} Q=0 \\
y_{0} A+y_{1} B \geqslant 0 \\
y_{1} \geqslant 0 \\
y_{0} b_{0}+y_{1} b_{1}<0 \tag{16}
\end{array}
$$

then

there exists $x=\left(x_{0}, x_{1}\right)$ s.t.

$$
\begin{array}{r}
P x_{0}+A x_{1}=b_{0} \\
Q x_{0}+B x_{1} \leqslant b_{1} \\
x_{1} \geqslant 0 \tag{19}
\end{array}
$$

We show that at most one of $x=\left(x_{0}, x_{1}\right)$ and $y=\left(y_{0}, y_{1}\right)$ exists.
Suppose by the contrary that both
$x=\left(x_{0}, x_{1}\right)$ and $y=\left(y_{0}, y_{1}\right)$ exists.
Then

$$
\begin{aligned}
0 & >y_{0} b_{0}+y_{1} b_{1} \\
& =y_{0}\left(P x_{0}+A x_{1}\right)+y_{1} b_{1} \\
& \geqslant y_{0}\left(P x_{0}+A x_{1}\right)+y_{1}\left(Q x_{0}+B x_{1}\right) \\
& =\left(y_{0} P+y_{1} Q\right) x_{0}+\left(y_{0} A+y_{1} B\right) x_{1} \\
& =0+\left(y_{0} A+y_{1} B\right) x_{1} \\
& \geqslant 0
\end{aligned}
$$

which is a contradiction.

Question 5

Assume that both (P) and (D) has a solution in the duality theorem. Prove that weak duality holds, that is, max $\leqslant \min$. (1pt)

Question 5

Assume that both (P) and (D) has a solution in the duality theorem. Prove that weak duality holds, that is, max $\leqslant \min$. (1pt)

$$
\begin{align*}
& \text { Primal: } \\
& \qquad \begin{array}{cl}
\max & c_{0} x_{0}+c_{1} x_{1} \\
\text { s.t. } & P x_{0}+A x_{1}=b_{0} \\
& Q x_{0}+B x_{1} \leqslant b_{1} \\
& x_{1} \geqslant 0
\end{array}
\end{align*}
$$

Dual:

$$
\begin{array}{ll}
\min & y_{0} b_{0}+y_{1} b_{1} \\
\text { s.t. } & y_{0} P+y_{1} Q=c_{0} \\
& y_{0} A+y_{1} B \geqslant c_{1} \\
& y_{1} \geqslant 0 \tag{27}
\end{array}
$$

(23)

Question 5

Assume that both (P) and (D) has a solution in the duality theorem. Prove that weak duality holds, that is, max $\leqslant \min$. (1pt)

\[

\]

Let $x=\left(x_{0}, x_{1}\right)$ be a solution of (P), and $y=\left(y_{0}, y_{1}\right)$ a solution of (D).

Question 5

Assume that both (P) and (D) has a solution in the duality theorem. Prove that weak duality holds, that is, max $\leqslant \min$. (1pt)

$$
\begin{array}{ll}
\text { Primal: } & \tag{24}\\
& \max c_{0} x_{0}+c_{1} x_{1} \\
& \text { s.t. } \\
& P x_{0}+A x_{1}=b_{0} \\
& Q x_{0}+B x_{1} \leqslant b_{1} \\
& x_{1} \geqslant 0
\end{array}
$$

Dual:

$$
\begin{array}{ccc}
\max c_{0} x_{0}+c_{1} x_{1} & (20) & \min y_{0} b_{0}+y_{1} b_{1} \\
\text { s.t. } P x_{0}+A x_{1}=b_{0} & (21) & \text { s.t. } y_{0} P+y_{1} Q=c_{0} \\
Q x_{0}+B x_{1} \leqslant b_{1} & (22) & y_{0} A+y_{1} B \geqslant c_{1} \\
x_{1} \geqslant 0 & (23) & y_{1} \geqslant 0 \tag{27}
\end{array}
$$

Let $x=\left(x_{0}, x_{1}\right)$ be a solution of (P), and $y=\left(y_{0}, y_{1}\right)$ a solution of (D).

$$
c_{0} x_{0}+c_{1} x_{1}=\left(y_{0} P+y_{1} Q\right) x_{0}+c_{1} x_{1}
$$

Question 5

Assume that both (P) and (D) has a solution in the duality theorem. Prove that weak duality holds, that is, max $\leqslant \min$. (1pt)

$$
\begin{array}{ll}
\text { Primal: } & \tag{24}\\
& \max c_{0} x_{0}+c_{1} x_{1} \\
& \text { s.t. } \\
& P x_{0}+A x_{1}=b_{0} \\
& Q x_{0}+B x_{1} \leqslant b_{1} \\
& x_{1} \geqslant 0
\end{array}
$$

Dual:

$$
\begin{array}{lll}
\max c_{0} x_{0}+c_{1} x_{1} & (20) & \min y_{0} b_{0}+y_{1} b_{1} \\
\text { s.t. } P x_{0}+A x_{1}=b_{0} & (21) & \text { s.t. } y_{0} P+y_{1} Q=c_{0} \\
Q x_{0}+B x_{1} \leqslant b_{1} & (22) & y_{0} A+y_{1} B \geqslant c_{1} \\
x_{1} \geqslant 0 & (23) & y_{1} \geqslant 0 \tag{27}
\end{array}
$$

Let $x=\left(x_{0}, x_{1}\right)$ be a solution of (P), and $y=\left(y_{0}, y_{1}\right)$ a solution of (D).

$$
\begin{aligned}
c_{0} x_{0}+c_{1} x_{1} & =\left(y_{0} P+y_{1} Q\right) x_{0}+c_{1} x_{1} \\
& \leqslant\left(y_{0} P+y_{1} Q\right) x_{0}+\left(y_{0} A+y_{1} B\right) x_{1}
\end{aligned}
$$

Question 5

Assume that both (P) and (D) has a solution in the duality theorem. Prove that weak duality holds, that is, max $\leqslant \min$. (1pt)

Primal:
Dual:

$$
\begin{array}{ccc}
\max c_{0} x_{0}+c_{1} x_{1} & (20) & \min y_{0} b_{0}+y_{1} b_{1} \\
\text { s.t. } P x_{0}+A x_{1}=b_{0} & (21) & \text { s.t. } y_{0} P+y_{1} Q=c_{0} \\
Q x_{0}+B x_{1} \leqslant b_{1} & (22) & y_{0} A+y_{1} B \geqslant c_{1} \\
x_{1} \geqslant 0 & (23) & y_{1} \geqslant 0
\end{array}
$$

Let $x=\left(x_{0}, x_{1}\right)$ be a solution of (P), and $y=\left(y_{0}, y_{1}\right)$ a solution of (D).

$$
\begin{aligned}
c_{0} x_{0}+c_{1} x_{1} & =\left(y_{0} P+y_{1} Q\right) x_{0}+c_{1} x_{1} \\
& \leqslant\left(y_{0} P+y_{1} Q\right) x_{0}+\left(y_{0} A+y_{1} B\right) x_{1} \\
& =y_{0}\left(P x_{0}+A x_{1}\right)+y_{1}\left(Q x_{0}+B x_{1}\right)
\end{aligned}
$$

Question 5

Assume that both (P) and (D) has a solution in the duality theorem. Prove that weak duality holds, that is, max $\leqslant \min$. (1pt)
Primal:
Dual:

$$
\begin{array}{ll}
\max & c_{0} x_{0}+c_{1} x_{1} \\
\text { s.t. } & P x_{0}+A x_{1}=b_{0} \\
& Q x_{0}+B x_{1} \leqslant b_{1} \tag{22}\\
& x_{1} \geqslant 0
\end{array}
$$

$$
\begin{array}{ll}
\min & y_{0} b_{0}+y_{1} b_{1} \\
\text { s.t. } & y_{0} P+y_{1} Q=c_{0} \\
& y_{0} A+y_{1} B \geqslant c_{1} \tag{26}\\
& y_{1} \geqslant 0
\end{array}
$$

Let $x=\left(x_{0}, x_{1}\right)$ be a solution of (P), and $y=\left(y_{0}, y_{1}\right)$ a solution of (D).

$$
\begin{aligned}
c_{0} x_{0}+c_{1} x_{1} & =\left(y_{0} P+y_{1} Q\right) x_{0}+c_{1} x_{1} \\
& \leqslant\left(y_{0} P+y_{1} Q\right) x_{0}+\left(y_{0} A+y_{1} B\right) x_{1} \\
& =y_{0}\left(P x_{0}+A x_{1}\right)+y_{1}\left(Q x_{0}+B x_{1}\right) \\
& =y_{0} b_{0}+y_{1}\left(Q x_{0}+B x_{1}\right)
\end{aligned}
$$

Question 5

Assume that both (P) and (D) has a solution in the duality theorem. Prove that weak duality holds, that is, max $\leqslant \min$. (1pt)
Primal:
Dual:

$$
\begin{array}{ll}
\max & c_{0} x_{0}+c_{1} x_{1} \\
\text { s.t. } & P x_{0}+A x_{1}=b_{0} \\
& Q x_{0}+B x_{1} \leqslant b_{1} \tag{26}\\
& x_{1} \geqslant 0
\end{array}
$$

$$
\begin{array}{ll}
\min & y_{0} b_{0}+y_{1} b_{1} \\
\text { s.t. } & y_{0} P+y_{1} Q=c_{0} \\
& y_{0} A+y_{1} B \geqslant c_{1} \\
& y_{1} \geqslant 0 \tag{27}
\end{array}
$$

Let $x=\left(x_{0}, x_{1}\right)$ be a solution of (P), and $y=\left(y_{0}, y_{1}\right)$ a solution of (D).

$$
\begin{aligned}
c_{0} x_{0}+c_{1} x_{1} & =\left(y_{0} P+y_{1} Q\right) x_{0}+c_{1} x_{1} \\
& \leqslant\left(y_{0} P+y_{1} Q\right) x_{0}+\left(y_{0} A+y_{1} B\right) x_{1} \\
& =y_{0}\left(P x_{0}+A x_{1}\right)+y_{1}\left(Q x_{0}+B x_{1}\right) \\
& =y_{0} b_{0}+y_{1}\left(Q x_{0}+B x_{1}\right) \\
& \leqslant y_{0} b_{0}+y_{1} b_{1}
\end{aligned}
$$

Question 6

Let $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$, and $c_{1}, \ldots, c_{k} \in \mathbb{R}^{n}$ Formulate the following problem as an LP: $A x=b, x \geqslant 0, \min f(x)$ where $f(x):=\max \left\{c_{1} x, \ldots, c_{k} x\right\}$. (1pt)

Question 6

Let $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$, and $c_{1}, \ldots, c_{k} \in \mathbb{R}^{n}$ Formulate the following problem as an LP: $A x=b, x \geqslant 0, \min f(x)$ where $f(x):=\max \left\{c_{1} x, \ldots, c_{k} x\right\}$. (1pt)

By the definition of f, we have that $c_{i} x \leqslant f(x):=\max \left\{c_{1} x, \ldots, c_{k} x\right\}$ holds for any $i=1, \cdots, k$.

Question 6

Let $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$, and $c_{1}, \ldots, c_{k} \in \mathbb{R}^{n}$ Formulate the following problem as an LP: $A x=b, x \geqslant 0, \min f(x)$ where $f(x):=\max \left\{c_{1} x, \ldots, c_{k} x\right\}$. (1pt)

By the definition of f, we have that $c_{i} x \leqslant f(x):=\max \left\{c_{1} x, \ldots, c_{k} x\right\}$ holds for any $i=1, \cdots, k$.

Let us define the new variable z.

Question 6

Let $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$, and $c_{1}, \ldots, c_{k} \in \mathbb{R}^{n}$ Formulate the following problem as an LP: $A x=b, x \geqslant 0, \min f(x)$ where $f(x):=\max \left\{c_{1} x, \ldots, c_{k} x\right\}$. (1pt)

By the definition of f, we have that $c_{i} x \leqslant f(x):=\max \left\{c_{1} x, \ldots, c_{k} x\right\}$ holds for any $i=1, \cdots, k$.

Let us define the new variable z.

$$
\begin{aligned}
A x & =b, \\
x & \geqslant 0
\end{aligned}
$$

Question 6

Let $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$, and $c_{1}, \ldots, c_{k} \in \mathbb{R}^{n}$ Formulate the following problem as an LP: $A x=b, x \geqslant 0, \min f(x)$ where $f(x):=\max \left\{c_{1} x, \ldots, c_{k} x\right\}$. (1pt)

By the definition of f, we have that $c_{i} x \leqslant f(x):=\max \left\{c_{1} x, \ldots, c_{k} x\right\}$ holds for any $i=1, \cdots, k$.

Let us define the new variable z.

$$
\begin{aligned}
& A x=b, \\
& x \geqslant 0 \\
& c_{1} x \leqslant z \\
& \vdots \\
& c_{k} x \leqslant z
\end{aligned}
$$

Question 6

Let $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$, and $c_{1}, \ldots, c_{k} \in \mathbb{R}^{n}$ Formulate the following problem as an LP: $A x=b, x \geqslant 0, \min f(x)$ where $f(x):=\max \left\{c_{1} x, \ldots, c_{k} x\right\}$. (1pt)

By the definition of f, we have that $c_{i} x \leqslant f(x):=\max \left\{c_{1} x, \ldots, c_{k} x\right\}$ holds for any $i=1, \cdots, k$.

Let us define the new variable z.

$$
\begin{gathered}
A x=b, \\
x \geqslant 0 \\
c_{1} x \leqslant z \\
\vdots \\
c_{k} x \leqslant z \\
\min z
\end{gathered}
$$

Question 7

Reduce the following systems of inequalities to each other (in the sense that if we can solve one of them, then we can solve any of them):
(I): $A x=b$
(II): $B x \leqslant b$
$x \geqslant 0$
(III): $Q x \leqslant b$
(IV): $P x_{0}=b_{0}$
$x \geqslant 0$
$Q x_{1} \leqslant b_{1}$
Write up Farkas' lemma for all of them. (3pts)

Question 7

Reduce the following systems of inequalities to each other (in the sense that if we can solve one of them, then we can solve any of them):
(I): $A x=b$
(II): $B x \leqslant b$ $x \geqslant 0$
(III): $Q x \leqslant b$
(IV): $P x_{0}=b_{0}$
$x \geqslant 0$
Write up Farkas' lemma for all of them. (3pts)

We know how to solve (I), and we would like to solve (II).

Question 7

Reduce the following systems of inequalities to each other (in the sense that if we can solve one of them, then we can solve any of them):
(I): $A x=b$
(II): $B x \leqslant b$ $x \geqslant 0$
(III): $Q x \leqslant b$
(IV): $P x_{0}=b_{0}$
$Q x_{1} \leqslant b_{1}$
Write up Farkas' lemma for all of them. (3pts)

We know how to solve (I), and we would like to solve (II).
Let us define $A^{\prime}:=\left[\begin{array}{ll}B & I d\end{array}\right]$ where $I d$ is the identity matrix, $b^{\prime}=b$, and $x^{\prime}=(x, s) \geqslant 0$ where s are the slack variables.

Question 7

Reduce the following systems of inequalities to each other (in the sense that if we can solve one of them, then we can solve any of them):
(I): $A x=b$
(II): $B x \leqslant b$ $x \geqslant 0$
(III): $Q x \leqslant b$
(IV): $P x_{0}=b_{0}$
$Q x_{1} \leqslant b_{1}$
Write up Farkas' lemma for all of them. (3pts)

We know how to solve (I), and we would like to solve (II).
Let us define $A^{\prime}:=\left[\begin{array}{ll}B & I d\end{array}\right]$ where $I d$ is the identity matrix, $b^{\prime}=b$, and $x^{\prime}=(x, s) \geqslant 0$ where s are the slack variables.

Then $A^{\prime} x^{\prime}=b^{\prime}, x^{\prime} \geqslant 0$ is equivalent to (II).

Reduce the following systems of inequalities to each other (in the sense that if we can solve one of them, then we can solve any of them):
(I): $A x=b$
(II): $B x \leqslant b$
$x \geqslant 0$
$x \geqslant 0$
(III): $Q x \leqslant b$
(IV): $P x_{0}=b_{0}$
$Q x_{1} \leqslant b_{1}$
Write up Farkas' lemma for all of them. (3pts)

We know how to solve (I), and we would like to solve (II).
Let us define $A^{\prime}:=\left[\begin{array}{ll}B & I d\end{array}\right]$ where $I d$ is the identity matrix, $b^{\prime}=b$, and $x^{\prime}=(x, s) \geqslant 0$ where s are the slack variables.

Then $A^{\prime} x^{\prime}=b^{\prime}, x^{\prime} \geqslant 0$ is equivalent to (II).
We know how to solve (II), and we would like to solve (III).
Let us define $B^{\prime}:=\left[\begin{array}{ll}Q & -Q\end{array}\right], b^{\prime}=b$, and $x^{\prime}=\left(x^{+}, x^{-}\right) \geqslant 0$.

Reduce the following systems of inequalities to each other (in the sense that if we can solve one of them, then we can solve any of them):
(I): $A x=b$
(II): $B x \leqslant b$
$x \geqslant 0$
$x \geqslant 0$
(III): $Q x \leqslant b$
(IV): $P x_{0}=b_{0}$
$Q x_{1} \leqslant b_{1}$
Write up Farkas' lemma for all of them. (3pts)

We know how to solve (I), and we would like to solve (II).
Let us define $A^{\prime}:=\left[\begin{array}{ll}B & I d\end{array}\right]$ where $I d$ is the identity matrix, $b^{\prime}=b$, and $x^{\prime}=(x, s) \geqslant 0$ where s are the slack variables.

Then $A^{\prime} x^{\prime}=b^{\prime}, x^{\prime} \geqslant 0$ is equivalent to (II).
We know how to solve (II), and we would like to solve (III).
Let us define $B^{\prime}:=[Q-Q], b^{\prime}=b$, and $x^{\prime}=\left(x^{+}, x^{-}\right) \geqslant 0$.
Then $B^{\prime} x^{\prime} \leqslant b^{\prime}, x^{\prime} \geqslant 0$ is equivalent to (III).
(I): $A x=b$
$x \geqslant 0$
(II): $B x \leqslant b$ $x \geqslant 0$
(III): $Q x \leqslant b$
(IV): $P x_{0}=b_{0}$ $Q x_{1} \leqslant b_{1}$

We know how to solve (III), and we would like to solve (IV).
Let us define $Q^{\prime}:=\left[\begin{array}{cc}\mathrm{P} & 0 \\ -\mathrm{P} & 0 \\ 0 & \mathrm{Q}\end{array}\right], b=\left(b_{0},-b_{0}, b_{1}\right)$, and $x^{\prime}=\left(x_{0}, x_{1}\right)$.
(I): $A x=b$
$x \geqslant 0$
(II): $B x \leqslant b$ $x \geqslant 0$
(III): $Q x \leqslant b$
(IV): $P x_{0}=b_{0}$ $Q x_{1} \leqslant b_{1}$

We know how to solve (III), and we would like to solve (IV).
Let us define $Q^{\prime}:=\left[\begin{array}{cc}\mathrm{P} & 0 \\ -\mathrm{P} & 0 \\ 0 & \mathrm{Q}\end{array}\right], b=\left(b_{0},-b_{0}, b_{1}\right)$, and $x^{\prime}=\left(x_{0}, x_{1}\right)$.
Then $Q^{\prime} x^{\prime} \leqslant b^{\prime}$, is equivalent to (IV).
(I): $A x=b$
$x \geqslant 0$
(II): $B x \leqslant b$ $x \geqslant 0$
(III): $Q x \leqslant b$
(IV): $P x_{0}=b_{0}$ $Q x_{1} \leqslant b_{1}$

We know how to solve (III), and we would like to solve (IV).
Let us define $Q^{\prime}:=\left[\begin{array}{cc}\mathrm{P} & 0 \\ -\mathrm{P} & 0 \\ 0 & \mathrm{Q}\end{array}\right], b=\left(b_{0},-b_{0}, b_{1}\right)$, and $x^{\prime}=\left(x_{0}, x_{1}\right)$.
Then $Q^{\prime} x^{\prime} \leqslant b^{\prime}$, is equivalent to (IV).
We know how to solve (IV), and we would like to solve (I).
Let us define $P^{\prime}:=A, Q^{\prime}=-I d, b_{0}^{\prime}=b, b_{1}^{\prime}=0$, and $x_{0}^{\prime}=x, x_{1}^{\prime}=x$.
(I): $A x=b$
(II): $B x \leqslant b$ $x \geqslant 0$
(III): $Q x \leqslant b$
(IV): $P x_{0}=b_{0}$ $Q x_{1} \leqslant b_{1}$

We know how to solve (III), and we would like to solve (IV).
Let us define $Q^{\prime}:=\left[\begin{array}{cc}\mathrm{P} & 0 \\ -\mathrm{P} & 0 \\ 0 & \mathrm{Q}\end{array}\right], b=\left(b_{0},-b_{0}, b_{1}\right)$, and $x^{\prime}=\left(x_{0}, x_{1}\right)$.
Then $Q^{\prime} x^{\prime} \leqslant b^{\prime}$, is equivalent to (IV).
We know how to solve (IV), and we would like to solve (I).
Let us define $P^{\prime}:=A, Q^{\prime}=-I d, b_{0}^{\prime}=b, b_{1}^{\prime}=0$, and $x_{0}^{\prime}=x, x_{1}^{\prime}=x$.
Then $P^{\prime} x_{0}^{\prime}=b_{0}^{\prime}, Q^{\prime} x_{1}^{\prime} \leqslant b_{1}^{\prime}$, is equivalent to (IV).

Question 7

We write the Farkas' Lemma for each problem:
(I). There exists x s.t. $A x=b$
$x \geqslant 0$
there is no y s.t. $y A \geqslant 0$ $y b<0$

Question 7

We write the Farkas' Lemma for each problem:
(I). There exists x st. $A x=b$ $x \geqslant 0$
\Longleftrightarrow
there is no y s.t. $y A \geqslant 0$ $y b<0$
(II). There exists x st. $B x \leqslant b$

$$
x \geqslant 0
$$

\Longleftrightarrow
there is no y s.t. $y B \geqslant 0$

$$
\begin{aligned}
y & \geqslant 0 \\
y b & <0
\end{aligned}
$$

Question 7

We write the Farkas' Lemma for each problem:
(I). There exists x s.t. $A x=b$ $x \geqslant 0$
\Longleftrightarrow
there is no y s.t. $y A \geqslant 0$ $y b<0$
(II). There exists x s.t. $B x \leqslant b$

$$
x \geqslant 0
$$

\Longleftrightarrow
there is no y s.t. $y B \geqslant 0$

$$
\begin{aligned}
y & \geqslant 0 \\
y b & <0
\end{aligned}
$$

(III). There exists x s.t. $Q x \leqslant b$

there is no y s.t. $y Q=0$

$$
\begin{aligned}
y & \geqslant 0 \\
y b & <0
\end{aligned}
$$

Question 7

We write the Farkas' Lemma for each problem:
(I). There exists x st. $A x=b$

$$
x \geqslant 0
$$

\Longleftrightarrow
there is no y s.t. $y A \geqslant 0$ $y b<0$
(II). There exists x st. $B x \leqslant b$

$$
x \geqslant 0
$$

\Longleftrightarrow
there is no y s.t. $y B \geqslant 0$

$$
\begin{aligned}
y & \geqslant 0 \\
y b & <0
\end{aligned}
$$

(III). There exists x st. $Q x \leqslant b$
there is no y s.t. $y Q=0$

$$
\begin{aligned}
y & \geqslant 0 \\
y b & <0
\end{aligned}
$$

(IV). There exists x st. $P x_{0}=b_{0}$
 $Q x_{1} \leqslant b_{1}$
there is no y s.t. $y_{0} P+y_{1} Q=0$

$$
\begin{aligned}
y_{1} & \geqslant 0 \\
y_{0} b_{0}+y_{1} b_{1} & <0
\end{aligned}
$$

