# Optimization

Fall semester 2022/23

Kristóf Bérczi

Eötvös Loránd University Institute of Mathematics Department of Operations Research



Lecture 4: Gradient descent, Mirror descent, and Multiplicative Weights Update

## **Objective:** $\min_{x \in \mathbb{R}^n} f(x)$ (unconstrained setting)

Model: 1st-order oracle is given, i.e., we can query the gradient at any point.

**Solution:** Given  $\varepsilon > 0$ , output a point  $x \in \mathbb{R}^n$  s.t.  $f(x) \leq y^* + \varepsilon$ , where  $y^*$  denotes the optimal value.

• The running time will be proportional to  $1/\varepsilon$ , hence it is not polynomial. However, we will see that in this setting one cannot obtain polynomial time algorithms.

**Remark:** As f is convex, a local minimum is a global minimum. So as long as we can find a point to decrease the objective value, we are making progress and we won't get stuck. But how to decrease the objective?

Not a single method, but a general framework.

## Scheme:

- **1** Choose a starting point  $x_1 \in \mathbb{R}^n$ .
- **2** Suppose  $x_1, \ldots, x_t$  are computed. Choose  $x_{t+1}$  as a linear combination of  $x_t$  and  $\nabla f(x_t)$ .
- Stop once a certain stopping criterion is met and output the last iterate.

If T is the total number of iterations, then the running time is  $O(T \cdot M(x))$ , where M(x) is the time of each update.

- The update time M(x) cannot be optimized below a certain level.
- The main goal is to keep T as small as possible.

We only have local information about  $x \Rightarrow$  a reasonable idea is to pick a direction which locally provides the **largest drop** in the function value.

**Formally:** Pick a unit vector u for which a 'tiny' ( $\delta$ ) step in direction u maximizes

$$f(x)-f(x+\delta u).$$

This leads to the optimization problem

$$\max_{\|u\|=1} \left[ \lim_{\delta \to 0^+} \frac{f(x) - f(x + \delta u)}{\delta} \right].$$

By the Taylor approximation of f, the limit is simply the directional derivative of f at x in direction u, thus

$$\max_{\|u\|=1} \left[ -\langle \nabla f(x), u \rangle \right].$$

### Cauchy-Schwarz inequality

For all  $x, y \in \mathbb{R}^n$ , we have  $\langle x, y \rangle \leq ||x|| ||y||$ .

#### Proof sketch.

Assuming  $x, y \in \mathbb{R}^2$ , we know that  $\langle x, y \rangle = ||x|| ||y|| \cos \theta$ , where  $\theta$  is the angle between x and y. In higher dimensions, intuitively, the two vectors x and y form together a subspace of dimension at most 2 that can be thought of as  $\mathbb{R}^2$ .  $\Box$ 

## Why using the gradient? II

**Recall:**  $\max_{\|u\|=1} \left[-\langle \nabla f(x), u \rangle\right]$ 

From the Cauchy-Schwarz inequality, we get

$$-\langle \nabla f(x), u \rangle \leqslant \|\nabla f(x)\| \|u\| = \|\nabla f(x)\|,$$

and equality holds if  $u = -\frac{\nabla f(x)}{\|\nabla f(x)\|}$ .

 $\Rightarrow$  Moving in the direction of the **negative gradient** is an instantaneously good strategy - called the **gradient flow**:

$$\frac{dx}{dt} = -\frac{\nabla f(x)}{\|\nabla f(x)\|}.$$

Question: How to implement the strategy on a computer?

Natural discretization:

$$x_{t+1} = x_t - \alpha \frac{\nabla f(x_t)}{\|\nabla f(x_t)\|},$$

where  $\alpha > {\rm 0}$  is the 'step length'. More generally,

$$x_{t+1} = x_t - \eta \nabla f(x_t),$$

where  $\eta > 0$  is a parameter.



## Assumptions

**Step length:** Ideally, we would like to take **big steps**. This results in smaller number of iterations, but the function can change dramatically, leading to a large error.

Solution: Assumptions on certain regularity parameters.

**①** Lipschitz gradient. For every  $x, y \in \mathbb{R}^n$  we have

 $\|\nabla f(x) - \nabla f(y)\| \leq L \|x - y\|.$ 

This is also sometimes referred to as L-smoothness of f.

 $\Rightarrow$  Around x, the gradient changes in a controlled manner; we can take larger step size.

**2 Bounded gradient.** For every  $x \in \mathbb{R}^n$  we have

 $\|\nabla f(x)\| \leqslant G.$ 

This implies that f is G-Lipschitz.

 $\Rightarrow$  The function can go towards infinity in a controlled manner.

**③ Good initial point.** A point  $x_1$  is provided such that  $||x_1 - x^*|| \le D$ , where  $x^*$  is some optimal solution.

### Thm.

Given a first-order oracle access to an *L*-Lipschitz convex function  $f : \mathbb{R}^n \to \mathbb{R}$ , an initial point  $x_1 \in \mathbb{R}^n$  with  $||x_1 - x^*|| \leq D$ , and  $\varepsilon > 0$ , there is an algorithm the outputs a point  $x \in \mathbb{R}^n$  such that  $f(x) \leq f(x^*) + \varepsilon$ . The algorithm makes  $T = O\left(\frac{LD^2}{\varepsilon}\right)$  queries to the oracle and performs O(nT) arithmetic operations.

### Algorithm

• Let 
$$T = O(\frac{LD^2}{\varepsilon})$$

**2** Let 
$$\eta = \frac{1}{L}$$

**3** Repeat for 
$$t = 1, \ldots, T - 1$$
:

• 
$$x_{t+1} = x_t - \eta \nabla f(x_t)$$
.

**4** Output  $x_T$ .



## Lipschitz gradient

#### Lower bound

Consider any algorithm for solving the convex unconstrained minimization problem  $\min_{x \in \mathbb{R}^n} f(x)$  in the first-order model, when f has Lipschitz gradient with constant L and the initial point  $x_1 \in \mathbb{R}^n$  satisfies  $||x_1 - x^*|| \leq D$ . There is a function f such that

$$\min_{1\leqslant i\leqslant T}f(x_i)-\min_{x\in\mathbb{R}^n}f(x)\geqslant \frac{LD^2}{T^2}.$$

 $\Rightarrow$  The theorem translates to a lower bound of  $\Omega(\frac{1}{\sqrt{\varepsilon}})$  iterations to reach an  $\varepsilon$ -optimal solution.

Is there a method which matches the  $\frac{1}{\sqrt{\varepsilon}}$  iterations bound? Yes!

### Nesterov's accelerated gradient descent algorithm

Under the same assumptions, there is an algorithm the outputs a point  $x \in \mathbb{R}^n$  such that  $f(x) \leq f(x^*) + \varepsilon$ , makes  $T = O(\frac{\sqrt{LD}}{\sqrt{\varepsilon}})$  queries to the oracle, and performs O(nT) arithmetic operations.

## **Objective:** $\min_{x \in K} f(x)$ (constrained setting)

 $\Rightarrow$  The next iterate  $x_{t+1}$  might fall outside of K, hence we need to project it back onto K, that is,

$$x_{t+1} = \operatorname{proj}_{K}(x_t - \eta_t \cdot \nabla f(x_t)).$$

**Difficulty:** The projection may or may not be computationally expensive to perform.

#### Thm.

Given a first-order oracle access to a convex function  $f : \mathbb{R}^n \to \mathbb{R}$  with an *L*-Lipschitz gradient, oracle access to a projection operator  $\operatorname{proj}_{\mathcal{K}}$  onto a convex set  $\mathcal{K} \subseteq \mathbb{R}^n$ , an initial point  $x_1 \in \mathbb{R}^n$  with  $||x - x^*|| \leq D$ , and  $\varepsilon > 0$ , there is an algorithm the outputs a point  $x \in \mathbb{R}^n$  such that  $f(x) \leq f(x^*) + \varepsilon$ . The algorithm makes  $\mathcal{T} = O\left(\frac{LD^2}{\varepsilon}\right)$  queries to the first-order and the projection oracles and performs O(nT) arithmetic operations.

The Lipschitz gradient algorithm leaves out convex functions which are **non-differentiable**, such as  $f(x) = \sum_{i=1}^{n} |x_i|$  or  $f(x) = \max\{|x_1|, \dots, |x_n|\}$ .

Let's reconsider how to choose the next point to converge quickly?

**Obvious choice:**  $x^{t+1} = \arg \min_{x \in K} f(x)$ 

 $\Rightarrow$  Coverges quickly to  $x^*$  (in one step). Yet, it is not very helpful as  $x^{t+1}$  is hard to compute.

Idea: Construct a function  $f^t$  that **approximates** f in a certain sense and is **easy to minimize**. The update rule becomes

$$x^{t+1} = \arg\min_{x \in K} f^t(x).$$

 $\Rightarrow$  Intuitively, if  $f^t$  becomes more and more accurate, the sequence of iterates should converge to  $x^*$ .

#### Example

The Lipschitz gradient algorithm corresponds to the choice

$$f^{t}(x) = f(x^{t}) + \langle \nabla f(x^{t}), x - x^{t} \rangle + \frac{L}{2} ||x - x^{t}||^{2}.$$

Indeed,  $\nabla f^t(x) = \nabla f(x^t) + L(x - x^t) = 0$  if and only if  $x = x^t - \frac{1}{L} \nabla f(x^t)$ .

In general, when the function is not differentiable, one can try to use the first order approximation of f at  $x^t$ , that is,

$$f^t(x) = f(x^t) + \langle \nabla f(x^t), x - x^t \rangle.$$

Then  $f^t(x) \leq f(x)$  and  $f^t$  gives a descent approximation of f in a small neighborhood  $x^t$ . The resulting updating rule will be

$$x^{t+1} = \arg\min_{x \in \mathcal{K}} \{ f(x^t) + \langle \nabla f(x^t), x - x^t \rangle \}.$$

## **Regularizers III**

### Example

K = [-1, 1] amd  $f(x) = x^2$ 

 $\Rightarrow$  The algorithm is way too aggressive as it jumps between -1 and +1 indefinitely.

[Even worse: if K is ubounded, then the minimum is not attained at any finite point!]



**Idea:** Add a term involving a distance function  $D: K \times K \to \mathbb{R}$  that does not allow  $x^{t+1}$  to land far away from  $x^t$ . More precisely,

$$\begin{aligned} x^{t+1} &= \arg\min_{x \in \mathcal{K}} \{ D(x, x^t) + \eta(f(x^t) + \langle \nabla f(x^t), x - x^t \rangle) \} \\ &= \arg\min_{x \in \mathcal{K}} \{ D(x, x^t) + \eta \langle \nabla f(x^t), x \rangle \}. \end{aligned}$$

**Remark:** By picking large  $\eta$ , the significance of the regularizer is reduced. By picking small  $\eta$ , we force  $x^{t+1}$  to stay close to  $x^t$ .

## Kullback-Leibler divergence

**Objective:**  $\min_{p \in \Delta_n} f(p)$ , where  $\Delta_n = \{p \in [0,1]^n : \sum_{i=1}^n p_i = 1\}$  is the **probability simplex**.

Recall that

$$p^{t+1} = \arg\min_{p \in \Delta_n} \{ D(p, p^t) + \eta \langle \nabla f(p^t), p \rangle \}.$$

For two probability distributions ,  $p, q \in \Delta_n$ , their Kullback-Leibler divergence is defined as

$$D_{\mathcal{KL}}(p,q) = -\sum_{i=1}^{n} p_i \log \frac{q_i}{p_i}.$$

Remarks:

- D<sub>KL</sub> is **not** symmetric
- $D_{KL}(p,q) \ge 0$

#### Lemma

Consider any vector  $q \in \mathbb{R}^n_{\geq 0}$  and a vector  $g \in \mathbb{R}^n$ . Define  $w_i^* = q_i e^{-\eta g_i}$  for  $i = 1, \ldots, n$ . Then  $\arg\min_{p \in \Delta_n} \{D_{KL}(p, q) + \eta \langle g, p \rangle\} = \frac{w^*}{\|w^*\|_1}$ .

## Exponential gradient descent

### Algorithm

1 Initialize  $p^1 = \frac{1}{n} \mathbb{1}$  (uniform distribution).

**2** Repeat for  $t = 1, \ldots, T$ :

• Obtain 
$$g^t = \nabla f(p_t)$$

• Let 
$$w^{t+1} \in \mathbb{R}^n$$
 and  $p^{t+1} \in \Delta_n$  be defined as

$$w_i^{t+1} = p_i^t e^{-\eta g_i^t}$$
 and  $p_i^{t+1} = \frac{w_i^{t+1}}{\sum_{i=1}^n w_i^{t+1}}$ .

**Output** 
$$\bar{p} = \frac{1}{T} \sum_{t=1}^{T} p^t$$
.

#### Thm.

Suppose that  $f : \Delta_n \to \mathbb{R}$  is a convex function which satisfies  $\|\nabla f(p)\| \leq G$  for all  $p \in \Delta_n$ . If we set  $\eta = \Theta\left(\frac{\sqrt{\log n}}{\sqrt{T}G}\right)$ , then after  $T = \Omega\left(\frac{G^2 \log n}{\varepsilon^2}\right)$  iterations of the algorithm, the point  $\bar{p} = \frac{1}{T} \sum_{t=1}^{T} p^t$  satisfies  $f(\bar{p}) \leq f(p^*) + \varepsilon$ .

The analysis of the exponential gradient descent algorithm reveals that one can work with arbitrary vectors  $g^t$  instead of the gradients of f.

### Algorithm

**1** Initialize  $p^1 = \frac{1}{n} \mathbb{1}$  (uniform distribution).

**2** Repeat for  $t = 1, \ldots, T$ :

- Obtain  $g^t$  from the oracle.
- Let  $w^{t+1} \in \mathbb{R}^n$  and  $p^{t+1} \in \Delta_n$  be defined as

$$w_i^{t+1} = p_i^t e^{-\eta g_i^t}$$
 and  $p_i^{t+1} = \frac{w_i^{t+1}}{\sum_{j=1}^n w_j^{t+1}}$ 

**3** Output  $p^1, \ldots, p^T \in \Delta_n$ 

### Thm.

Assume that  $\|g^t\| \leq G$  for t = 1, ..., T. If we set  $\eta = \Theta\left(\frac{\sqrt{\log n}}{\sqrt{T}G}\right)$ , then after  $T = \Theta\left(\frac{G^2 \log n}{\varepsilon^2}\right)$  iterations we have  $\frac{1}{T}\sum_{i=1}^T \langle g^t, p^t \rangle \leq \min_{p \in \Delta_n} \frac{1}{T} \sum_{i=1}^T \langle g^t, p \rangle + \varepsilon$ .

## **Regularizers** revisited

**Update rule:**  $x^{t+1} = \arg \min_{x \in K} \{ D(x, x^t) + \eta \langle \nabla f(x^t), x \rangle \}.$ 

The **Bregman divergence** of a function  $f : K \to \mathbb{R}$  at  $u, w \in K$  is defined to be  $D_f(u, w) = f(u) - (f(w) + \langle \nabla f(w), u - w \rangle).$ 

**Remark:** The Kullback-Leibler divergence is the Bregman divergence corresponding to the function  $H(x) = \sum_{i=1}^{n} x_i \log x_i - x_i$ .

For any convex regularizer  $R: \mathbb{R}^n \to \mathbb{R}$ , by denoting the gradient at step t by  $g^t$ , we have

$$\begin{aligned} x^{t+1} &= \arg\min_{x \in \mathcal{K}} \{ D_R(x, x^t) + \eta \langle g^t, x \rangle \} \\ &= \arg\min_{x \in \mathcal{K}} \{ \eta \langle g^t, x \rangle + R(x) - R(x^t) - \langle \nabla R(x^t), x - x^t \rangle \} \\ &= \arg\min_{x \in \mathcal{K}} \{ R(x) - \langle \nabla R(x^t) - \eta g^t, x \rangle \}. \end{aligned}$$

Suppose that there exists  $w^{t+1}$  such that  $\nabla R(w^{t+1}) = \nabla R(x^t) - \eta g^t$ . Then

$$\begin{aligned} x^{t+1} &= \arg\min_{x \in K} \{ R(x) - \langle \nabla R(x^t) - \eta g^t, x \rangle \} \\ &= \arg\min_{x \in K} \{ R(x) - R(w^{t+1}) + \langle \nabla R(w^{t+1}), x \rangle \} \\ &= \arg\min_{x \in K} \{ D_R(x, w^{t+1}) \}. \qquad (D_R\text{-projection of } w^{t+1} \text{ onto } K) \end{aligned}$$

## Mirror descent I

Assume that the regularizer  $R : \Omega \to \mathbb{R}^n$  has a domain  $\Omega$  which contains K as a subset. Furthermore, assume that  $\nabla R : \Omega \to \mathbb{R}^n$  is a bijection (**mirror map**).

### Algorithm

**Input:** 1st-order oracle access to convex  $f : K \to \mathbb{R}$ , oracle access to  $\nabla R$  and its inverse, projection operator w.r.t.  $D_R(\cdot, \cdot)$ , initial point  $x^1 \in K$ , parameter  $\eta > 0$ , integer T > 0.

- **1** Repeat for  $t = 1, \ldots, T$ :
  - Obtain  $g^t = \nabla f(p_t)$ .
  - Let  $w^{t+1}$  be such that  $\nabla R(w^{t+1}) = \nabla R(x^t) \eta \nabla f(x^t)$ .

• Set 
$$x^{t+1} = \arg\min_{x \in K} D_R(x, w^{t+1})$$
.

**2** Output  $\bar{x} = \frac{1}{T} \sum_{t=1}^{T} x^t$ .

## Remarks:

- The mirror map abla R and its inverse should be efficiently computable.
- The projection step arg min<sub>x∈K</sub> D<sub>R</sub>(x, w<sup>t+1</sup>) should be computationally easy to perform.

#### Thm.

Let  $f : K \to \mathbb{R}$  and  $R : \Omega \to \mathbb{R}$  be convex functions with  $K \subseteq \Omega \subseteq \mathbb{R}^n$ . Suppose that the gradient map  $\nabla R : \Omega \to \mathbb{R}^n$  is a bijection,  $\|\nabla f(x)\| \leq G$  for  $x \in K$  (bounded gradient), and that  $D_R(x, y) \geq \frac{\sigma}{2} \|x - y\|^{*2}$  for  $x \in \Omega$  (R is  $\sigma$ -strongly convex w.r.t. dual norm  $\|\cdot\|^*$ ). If we set  $\eta = \Theta\left(\frac{\sqrt{\sigma D_R(x^*, x^1)}}{\sqrt{\tau}G}\right)$ , then after  $T = \Theta\left(\frac{G^2 D_R(x^*, x^1)}{\sigma \varepsilon^2}\right)$  iterations the point  $\bar{x}$  satisfies  $f(\bar{x}) \leq f(x^*) + \varepsilon$ .



N. Vishnoi. Algorithms for convex optimization.

- Chapter 6
- Chapter 7
- L.C. Lau. Convexity and optimization.
  - Lecture 7

## Exercises

• Let G = (V, E) be an undirected graph and  $s, t \in V$ . Consider the following problem:  $\min \sum_{uv \in E} |x_u - x_v|$ 

s.t. 
$$x_s - x_t = 1$$

This is not a linear program in this form. Rewrite it as a linear program. (1pt) 2 Let us consider the following functions:

$$\begin{split} f_1(w_1,w_2) &= \frac{1}{2}w_1^2 + \frac{7}{2}w_2^2, \text{and} \\ f_2(w_1,w_2) &= 100(w_2 - w_1^2)^2 + (1 - w_1)^2 \qquad (\text{Rosenbrock's function}). \end{split}$$

- a Calculate the gradients of the functions. (2pts)
- **b** Are these function convex? (2pts)
- C Determine the global minimum of the functions. (2pts)
- **()** Choose a starting point  $w = (w_1, w_2)$  within distance 5 from an optimal solution, and perform one step of the Gradient descent algorithm. (2pts)
- **③** Given a convex, differentiable function  $F : K \to \mathbb{R}$  over a convex subset K of  $\mathbb{R}^n$ , the Bergman divergence of  $x, y \in K$  is defined as

$$D_F(x,y) = F(x) - F(y) - \langle \nabla F(y), x - y \rangle.$$

Prove that  $D_F(x, y) \ge 0$  (1pt)