
Optimization

Fall semester 2022/23

Kristóf Bérczi

Eötvös Loránd University

Institute of Mathematics

Department of Operations Research

Lecture 4: Gradient descent,

Mirror descent, and

Multiplicative Weights Update

Setting

Objective: minx∈Rn f (x) (unconstrained setting)

Model: 1st-order oracle is given, i.e., we can query the gradient at any point.

Solution: Given ε > 0, output a point x ∈ Rn s.t. f (x) ⩽ y∗ + ε, where y∗

denotes the optimal value.

• The running time will be proportional to 1/ε, hence it is not polynomial.

However, we will see that in this setting one cannot obtain polynomial time

algorithms.

Remark: As f is convex, a local minimum is a global minimum. So as long as

we can �nd a point to decrease the objective value, we are making progress and

we won't get stuck. But how to decrease the objective?

Gradient descent

Not a single method, but a general framework.

Scheme:

1 Choose a starting point x1 ∈ Rn.

2 Suppose x1, . . . , xt are computed. Choose xt+1 as a linear combination of

xt and ∇f (xt).

3 Stop once a certain stopping criterion is met and output the last iterate.

If T is the total number of iterations, then the running time is O(T ·M(x)),

where M(x) is the time of each update.

• The update time M(x) cannot be optimized below a certain level.

• The main goal is to keep T as small as possible.

Why using the gradient? I

We only have local information about x ⇒ a reasonable idea is to pick a

direction which locally provides the largest drop in the function value.

Formally: Pick a unit vector u for which a `tiny' (δ) step in direction u

maximizes

f (x)− f (x + δu).

This leads to the optimization problem

max
∥u∥=1

[
lim

δ→0+

f (x)− f (x + δu)

δ

]
.

By the Taylor approximation of f , the limit is simply the directional derivative

of f at x in direction u, thus

max
∥u∥=1

[−⟨∇f (x), u⟩] .

Cauchy-Schwarz inequality

Cauchy-Schwarz inequality

For all x , y ∈ Rn, we have ⟨x , y⟩ ⩽ ∥x∥∥y∥.

Proof sketch.
Assuming x , y ∈ R2, we know that ⟨x , y⟩ = ∥x∥∥y∥ cos θ, where θ is the angle

between x and y . In higher dimensions, intuitively, the two vectors x and y form

together a subspace of dimension at most 2 that can be thought of as R2.

Why using the gradient? II

Recall: max∥u∥=1 [−⟨∇f (x), u⟩]
From the Cauchy-Schwarz inequality, we get

−⟨∇f (x), u⟩ ⩽ ∥∇f (x)∥∥u∥ = ∥∇f (x)∥,
and equality holds if u = − ∇f (x)

∥∇f (x)∥ .

⇒ Moving in the direction of the negative gradient is an instantaneously good

strategy - called the gradient �ow:
dx

dt
= − ∇f (x)

∥∇f (x)∥ .

Question: How to implement the strategy on a computer?

Natural discretization:

xt+1 = xt − α
∇f (xt)

∥∇f (xt)∥
,

where α > 0 is the `step length'. More generally,

xt+1 = xt − η∇f (xt),

where η > 0 is a parameter.

Assumptions

Step length: Ideally, we would like to take big steps. This results in smaller

number of iterations, but the function can change dramatically, leading to a

large error.

Solution: Assumptions on certain regularity parameters.

1 Lipschitz gradient. For every x , y ∈ Rn we have

∥∇f (x)−∇f (y)∥ ⩽ L∥x − y∥.
This is also sometimes referred to as L-smoothness of f .

⇒ Around x , the gradient changes in a controlled manner; we can take

larger step size.

2 Bounded gradient. For every x ∈ Rn we have

∥∇f (x)∥ ⩽ G .

This implies that f is G -Lipschitz.

⇒ The function can go towards in�nity in a controlled manner.

3 Good initial point. A point x1 is provided such that ∥x1 − x∗∥ ⩽ D,

where x∗ is some optimal solution.

Lipschitz gradient

Thm.

Given a �rst-order oracle access to an L-Lipschitz convex function f : Rn → R,
an initial point x1 ∈ Rn with ∥x1 − x∗∥ ⩽ D, and ε > 0, there is an algorithm

the outputs a point x ∈ Rn such that f (x) ⩽ f (x∗) + ε. The algorithm makes

T = O
(

LD2

ε

)
queries to the oracle and performs O(nT) arithmetic operations.

Algorithm

1 Let T = O(LD
2

ε).

2 Let η = 1
L .

3 Repeat for t = 1, . . . ,T − 1:

• xt+1 = xt − η∇f (xt).

4 Output xT .

Lipschitz gradient

Lower bound

Consider any algorithm for solving the convex unconstrained minimization prob-

lem minx∈Rn f (x) in the �rst-order model, when f has Lipschitz gradient with

constant L and the initial point x1 ∈ Rn satis�es ∥x1 − x∗∥ ⩽ D. There is a

function f such that

min
1⩽i⩽T

f (xi)− min
x∈Rn

f (x) ⩾
LD2

T 2
.

⇒ The theorem translates to a lower bound of Ω(1√
ε
) iterations to reach an

ε-optimal solution.

Is there a method which matches the 1√
ε
iterations bound? Yes!

Nesterov's accelerated gradient descent algorithm

Under the same assumptions, there is an algorithm the outputs a point x ∈ Rn

such that f (x) ⩽ f (x∗) + ε, makes T = O(
√
LD√
ε
) queries to the oracle, and

performs O(nT) arithmetic operations.

Constrained setting - projection

Objective: minx∈K f (x) (constrained setting)

⇒ The next iterate xt+1 might fall outside of K , hence we need to project it

back onto K , that is,

xt+1 = projK (xt − ηt · ∇f (xt)).

Di�culty: The projection may or may not be computationally expensive to

perform.

Thm.

Given a �rst-order oracle access to a convex function f : Rn → R with an L-

Lipschitz gradient, oracle access to a projection operator projK onto a convex

set K ⊆ Rn, an initial point x1 ∈ Rn with ∥x − x∗∥ ⩽ D, and ε > 0, there

is an algorithm the outputs a point x ∈ Rn such that f (x) ⩽ f (x∗) + ε. The

algorithm makes T = O
(

LD2

ε

)
queries to the �rst-order and the projection

oracles and performs O(nT) arithmetic operations.

Regularizers I

The Lipschitz gradient algorithm leaves out convex functions which are

non-di�erentiable, such as f (x) =
∑n

i=1 |xi | or f (x) = max{|x1|, . . . , |xn|}.
Let's reconsider how to choose the next point to converge quickly?

Obvious choice: x t+1 = argminx∈K f (x)

⇒ Coverges quickly to x∗ (in one step). Yet, it is not very helpful as x t+1 is

hard to compute.

Idea: Construct a function f t that approximates f in a certain sense and is

easy to minimize. The update rule becomes

x t+1 = argminx∈K f t(x).

⇒ Intuitively, if f t becomes more and more accurate, the sequence of iterates

should converge to x∗.

Regularizers II

Example

The Lipschitz gradient algorithm corresponds to the choice

f t(x) = f (x t) + ⟨∇f (x t), x − x t⟩+ L

2
∥x − x t∥2.

Indeed, ∇f t(x) = ∇f (x t) + L(x − x t) = 0 if and only if x = x t − 1
L∇f (x t).

In general, when the function is not di�erentiable, one can try to use the �rst

order approximation of f at x t , that is,

f t(x) = f (x t) + ⟨∇f (x t), x − x t⟩.

Then f t(x) ⩽ f (x) and f t gives a descent approximation of f in a small

neighborhood x t . The resulting updating rule will be

x t+1 = argminx∈K{f (x t) + ⟨∇f (x t), x − x t⟩}.

Regularizers III

Example

K = [−1, 1] amd f (x) = x2

⇒ The algorithm is way too aggressive as it

jumps between −1 and +1 inde�nitely.

[Even worse: if K is ubounded, then the mini-

mum is not attained at any �nite point!]

b

b

b

b

1−1

Idea: Add a term involving a distance function D : K × K → R that does not

allow x t+1 to land far away from x t . More precisely,

x t+1 = argminx∈K{D(x , x t) + η(f (x t) + ⟨∇f (x t), x − x t⟩)}
= argminx∈K{D(x , x t) + η⟨∇f (x t), x⟩}.

Remark: By picking large η, the signi�cance of the regularizer is reduced. By

picking small η, we force x t+1 to stay close to x t .

Kullback-Leibler divergence

Objective: minp∈∆n f (p), where ∆n = {p ∈ [0, 1]n :
∑n

i=1 pi = 1} is the

probability simplex.

Recall that

pt+1 = argminp∈∆n
{D(p, pt) + η⟨∇f (pt), p⟩}.

For two probability distributions , p, q ∈ ∆n, their Kullback-Leibler divergence

is de�ned as

DKL(p, q) = −
n∑

i=1

pi log
qi
pi
.

Remarks:

• DKL is not symmetric

• DKL(p, q) ⩾ 0

Lemma

Consider any vector q ∈ Rn
⩾0 and a vector g ∈ Rn. De�ne w∗

i = qie
−ηgi for

i = 1, . . . , n. Then argminp∈∆n
{DKL(p, q) + η⟨g , p⟩} = w∗

∥w∗∥1 .

Exponential gradient descent

Algorithm

1 Initialize p1 = 1
n1 (uniform distribution).

2 Repeat for t = 1, . . . ,T :

• Obtain g t = ∇f (pt).
• Let w t+1 ∈ Rn and pt+1 ∈ ∆n be de�ned as

w t+1
i = pt

i e
−ηg ti and pt+1

i =
w t+1

i∑n
j=1 w

t+1
j

.

3 Output p̄ = 1
T

∑T
t=1 p

t .

Thm.

Suppose that f : ∆n → R is a convex function which satis�es ∥∇f (p)∥ ⩽ G

for all p ∈ ∆n. If we set η = Θ
(√

log n√
TG

)
, then after T = Ω

(
G2 log n

ε2

)
iterations

of the algorithm, the point p̄ = 1
T

∑T
t=1 p

t satis�es f (p̄) ⩽ f (p∗) + ε.

Multiplicative weights update

The analysis of the exponential gradient descent algorithm reveals that one can

work with arbitrary vectors g t instead of the gradients of f .

Algorithm

1 Initialize p1 = 1
n1 (uniform distribution).

2 Repeat for t = 1, . . . ,T :

• Obtain g t from the oracle.

• Let w t+1 ∈ Rn and pt+1 ∈ ∆n be de�ned as

w t+1
i = pt

i e
−ηg ti and pt+1

i =
w t+1

i∑n
j=1 w

t+1
j

.

3 Output p1, . . . , pT ∈ ∆n

Thm.

Assume that ∥g t∥ ⩽ G for t = 1, . . . ,T . If we set η = Θ
(√

log n√
TG

)
,

then after T = Θ
(

G2 log n
ε2

)
iterations we have 1

T

∑T
i=1⟨g t , pt⟩ ⩽

minp∈∆n

1
T

∑T
i=1⟨g t , p⟩+ ε.

Regularizers revisited

Update rule: x t+1 = argminx∈K{D(x , x t) + η⟨∇f (x t), x⟩}.
The Bregman divergence of a function f : K → R at u,w ∈ K is de�ned to be

Df (u,w) = f (u)− (f (w) + ⟨∇f (w), u − w⟩).

Remark: The Kullback-Leibler divergence is the Bregman divergence

corresponding to the function H(x) =
∑n

i=1 xi log xi − xi .

For any convex regularizer R : Rn → R, by denoting the gradient at step t by

g t , we have

x t+1 = argminx∈K{DR(x , x
t) + η⟨g t , x⟩}

= argminx∈K{η⟨g t , x⟩+ R(x)− R(x t)− ⟨∇R(x t), x − x t⟩}
= argminx∈K{R(x)− ⟨∇R(x t)− ηg t , x⟩}.

Suppose that there exists w t+1 such that ∇R(w t+1) = ∇R(x t)− ηg t . Then

x t+1 = argminx∈K{R(x)− ⟨∇R(x t)− ηg t , x⟩}
= argminx∈K{R(x)− R(w t+1) + ⟨∇R(w t+1), x⟩}
= argminx∈K{DR(x ,w

t+1)}. (DR -projection of w t+1 onto K)

Mirror descent I

Assume that the regularizer R : Ω → Rn has a domain Ω which contains K as a

subset. Furthermore, assume that ∇R : Ω → Rn is a bijection (mirror map).

Algorithm

Input: 1st-order oracle access to convex f : K → R, oracle access to ∇R and

its inverse, projection operator w.r.t. DR(·, ·), initial point x1 ∈ K , parameter

η > 0, integer T > 0.

1 Repeat for t = 1, . . . ,T :

• Obtain g t = ∇f (pt).
• Let w t+1 be such that ∇R(w t+1) = ∇R(x t)− η∇f (x t).
• Set x t+1 = argminx∈K DR(x ,w

t+1).

2 Output x̄ = 1
T

∑T
t=1 x

t .

Remarks:

• The mirror map ∇R and its inverse should be e�ciently computable.

• The projection step argminx∈K DR(x ,w
t+1) should be computationally

easy to perform.

Mirror descent II

Thm.

Let f : K → R and R : Ω → R be convex functions with K ⊆ Ω ⊆ Rn.

Suppose that the gradient map ∇R : Ω → Rn is a bijection, ∥∇f (x)∥ ⩽ G for

x ∈ K (bounded gradient), and that DR(x , y) ⩾ σ
2
∥x − y∥∗2 for x ∈ Ω (R is

σ-strongly convex w.r.t. dual norm ∥ · ∥∗).
If we set η = Θ

(√
σDR (x∗,x1)√

TG

)
, then after T = Θ

(
G2DR (x

∗,x1

σε2

)
iterations the

point x̄ satis�es f (x̄) ⩽ f (x∗) + ε.

Reading assignment

N. Vishnoi. Algorithms for convex optimization.

• Chapter 6

• Chapter 7

L.C. Lau. Convexity and optimization.

• Lecture 7

https://convex-optimization.github.io/
https://cs.uwaterloo.ca/~lapchi/cs798/notes.html

Exercises

1 Let G = (V ,E) be an undirected graph and s, t ∈ V . Consider the following problem:

min
∑
uv∈E

|xu − xv |

s.t. xs − xt = 1

This is not a linear program in this form. Rewrite it as a linear program. (1pt)

2 Let us consider the following functions:

f1(w1,w2) =
1

2
w2

1
+

7

2
w2

2
, and

f2(w1,w2) =100(w2 − w2

1
)2 + (1− w1)

2 (Rosenbrock's function).

a Calculate the gradients of the functions. (2pts)

b Are these function convex? (2pts)

c Determine the global minimum of the functions. (2pts)

d Choose a starting point w = (w1,w2) within distance 5 from an optimal

solution, and perform one step of the Gradient descent algorithm. (2pts)

3 Given a convex, di�erentiable function F : K → R over a convex subset K of Rn, the

Bergman divergence of x , y ∈ K is de�ned as

DF (x , y) = F (x)− F (y)− ⟨∇F (y), x − y⟩.
Prove that DF (x , y) ⩾ 0. (1pt)

	Lecture 4: Gradient descent, Mirror descent, and Multiplicative Weights Update

