Optimization

Fall semester 2022/23

Kristóf Bérczi

Eötvös Loránd University
Institute of Mathematics
Department of Operations Research

Lecture 4: Gradient descent, Mirror descent, and
Multiplicative Weights Update

Setting

Objective: $\min _{x \in \mathbb{R}^{n}} f(x)$ (unconstrained setting)
Model: 1st-order oracle is given, i.e., we can query the gradient at any point.
Solution: Given $\varepsilon>0$, output a point $x \in \mathbb{R}^{n}$ s.t. $f(x) \leqslant y^{*}+\varepsilon$, where y^{*} denotes the optimal value.

- The running time will be proportional to $1 / \varepsilon$, hence it is not polynomial. However, we will see that in this setting one cannot obtain polynomial time algorithms.

Remark: As f is convex, a local minimum is a global minimum. So as long as we can find a point to decrease the objective value, we are making progress and we won't get stuck. But how to decrease the objective?

Gradient descent

Not a single method, but a general framework.

Scheme:

(1) Choose a starting point $x_{1} \in \mathbb{R}^{n}$.
(2) Suppose x_{1}, \ldots, x_{t} are computed. Choose x_{t+1} as a linear combination of x_{t} and $\nabla f\left(x_{t}\right)$.
(3) Stop once a certain stopping criterion is met and output the last iterate.

If T is the total number of iterations, then the running time is $O(T \cdot M(x))$, where $M(x)$ is the time of each update.

- The update time $M(x)$ cannot be optimized below a certain level.
- The main goal is to keep T as small as possible.

Why using the gradient?

We only have local information about $x \Rightarrow$ a reasonable idea is to pick a direction which locally provides the largest drop in the function value.

Formally: Pick a unit vector u for which a 'tiny' (δ) step in direction u maximizes

$$
f(x)-f(x+\delta u) .
$$

This leads to the optimization problem

$$
\max _{\|u\|=1}\left[\lim _{\delta \rightarrow 0^{+}} \frac{f(x)-f(x+\delta u)}{\delta}\right] .
$$

By the Taylor approximation of f, the limit is simply the directional derivative of f at x in direction u, thus

$$
\max _{\|u\|=1}[-\langle\nabla f(x), u\rangle] .
$$

Cauchy-Schwarz inequality

Cauchy-Schwarz inequality

$$
\text { For all } x, y \in \mathbb{R}^{n} \text {, we have }\langle x, y\rangle \leqslant\|x\|\|y\| \text {. }
$$

Proof sketch.

Assuming $x, y \in \mathbb{R}^{2}$, we know that $\langle x, y\rangle=\|x\|\|y\| \cos \theta$, where θ is the angle between x and y. In higher dimensions, intuitively, the two vectors x and y form together a subspace of dimension at most 2 that can be thought of as \mathbb{R}^{2}.

Why using the gradient? II

Recall: $\max _{\|u\|=1}[-\langle\nabla f(x), u\rangle]$
From the Cauchy-Schwarz inequality, we get

$$
-\langle\nabla f(x), u\rangle \leqslant\|\nabla f(x)\|\|u\|=\|\nabla f(x)\|,
$$

and equality holds if $u=-\frac{\nabla f(x)}{\|\nabla f(x)\|}$.
\Rightarrow Moving in the direction of the negative gradient is an instantaneously good strategy - called the gradient flow:

$$
\frac{d x}{d t}=-\frac{\nabla f(x)}{\|\nabla f(x)\|}
$$

Question: How to implement the strategy on a computer?
Natural discretization:

$$
x_{t+1}=x_{t}-\alpha \frac{\nabla f\left(x_{t}\right)}{\left\|\nabla f\left(x_{t}\right)\right\|}
$$

where $\alpha>0$ is the 'step length'. More generally,

$$
x_{t+1}=x_{t}-\eta \nabla f\left(x_{t}\right)
$$

where $\eta>0$ is a parameter.

Assumptions

Step length: Ideally, we would like to take big steps. This results in smaller number of iterations, but the function can change dramatically, leading to a large error.

Solution: Assumptions on certain regularity parameters.
(1) Lipschitz gradient. For every $x, y \in \mathbb{R}^{n}$ we have

$$
\|\nabla f(x)-\nabla f(y)\| \leqslant L\|x-y\| .
$$

This is also sometimes referred to as L-smoothness of f.
\Rightarrow Around x, the gradient changes in a controlled manner; we can take larger step size.
(2) Bounded gradient. For every $x \in \mathbb{R}^{n}$ we have

$$
\|\nabla f(x)\| \leqslant G
$$

This implies that f is G-Lipschitz.
\Rightarrow The function can go towards infinity in a controlled manner.
(3) Good initial point. A point x_{1} is provided such that $\left\|x_{1}-x^{*}\right\| \leqslant D$, where x^{*} is some optimal solution.

Lipschitz gradient

Thm.

Given a first-order oracle access to an L-Lipschitz convex function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, an initial point $x_{1} \in \mathbb{R}^{n}$ with $\left\|x_{1}-x^{*}\right\| \leqslant D$, and $\varepsilon>0$, there is an algorithm the outputs a point $x \in \mathbb{R}^{n}$ such that $f(x) \leqslant f\left(x^{*}\right)+\varepsilon$. The algorithm makes $T=O\left(\frac{L D^{2}}{\varepsilon}\right)$ queries to the oracle and performs $O(n T)$ arithmetic operations.

Algorithm

(1) Let $T=O\left(\frac{L D^{2}}{\varepsilon}\right)$.
(2) Let $\eta=\frac{1}{L}$.
(3) Repeat for $t=1, \ldots, T-1$:

$$
\text { - } x_{t+1}=x_{t}-\eta \nabla f\left(x_{t}\right) \text {. }
$$

(4) Output x_{T}.

Lipschitz gradient

Lower bound

Consider any algorithm for solving the convex unconstrained minimization problem $\min _{x \in \mathbb{R}^{n}} f(x)$ in the first-order model, when f has Lipschitz gradient with constant L and the initial point $x_{1} \in \mathbb{R}^{n}$ satisfies $\left\|x_{1}-x^{*}\right\| \leqslant D$. There is a function f such that

$$
\min _{1 \leqslant i \leqslant T} f\left(x_{i}\right)-\min _{x \in \mathbb{R}^{n}} f(x) \geqslant \frac{L D^{2}}{T^{2}}
$$

\Rightarrow The theorem translates to a lower bound of $\Omega\left(\frac{1}{\sqrt{\varepsilon}}\right)$ iterations to reach an ε-optimal solution.
Is there a method which matches the $\frac{1}{\sqrt{\varepsilon}}$ iterations bound? Yes!

Nesterov's accelerated gradient descent algorithm

Under the same assumptions, there is an algorithm the outputs a point $x \in \mathbb{R}^{n}$ such that $f(x) \leqslant f\left(x^{*}\right)+\varepsilon$, makes $T=O\left(\frac{\sqrt{L} D}{\sqrt{\varepsilon}}\right)$ queries to the oracle, and performs $O(n T)$ arithmetic operations.

Constrained setting - projection

Objective: $\min _{x \in K} f(x)$ (constrained setting)

\Rightarrow The next iterate x_{t+1} might fall outside of K, hence we need to project it back onto K, that is,

$$
x_{t+1}=\operatorname{proj}_{K}\left(x_{t}-\eta_{t} \cdot \nabla f\left(x_{t}\right)\right)
$$

Difficulty: The projection may or may not be computationally expensive to perform.

Thm.

Given a first-order oracle access to a convex function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ with an L Lipschitz gradient, oracle access to a projection operator proj $_{K}$ onto a convex set $K \subseteq \mathbb{R}^{n}$, an initial point $x_{1} \in \mathbb{R}^{n}$ with $\left\|x-x^{*}\right\| \leqslant D$, and $\varepsilon>0$, there is an algorithm the outputs a point $x \in \mathbb{R}^{n}$ such that $f(x) \leqslant f\left(x^{*}\right)+\varepsilon$. The algorithm makes $T=O\left(\frac{L D^{2}}{\varepsilon}\right)$ queries to the first-order and the projection oracles and performs $O(n T)$ arithmetic operations.

Regularizers I

The Lipschitz gradient algorithm leaves out convex functions which are non-differentiable, such as $f(x)=\sum_{i=1}^{n}\left|x_{i}\right|$ or $f(x)=\max \left\{\left|x_{1}\right|, \ldots,\left|x_{n}\right|\right\}$. Let's reconsider how to choose the next point to converge quickly?
Obvious choice: $x^{t+1}=\arg \min _{x \in K} f(x)$
\Rightarrow Coverges quickly to x^{*} (in one step). Yet, it is not very helpful as x^{t+1} is hard to compute.

Idea: Construct a function f^{t} that approximates f in a certain sense and is easy to minimize. The update rule becomes

$$
x^{t+1}=\arg \min _{x \in K} f^{t}(x)
$$

\Rightarrow Intuitively, if f^{t} becomes more and more accurate, the sequence of iterates should converge to x^{*}.

Regularizers II

Example

The Lipschitz gradient algorithm corresponds to the choice

$$
f^{t}(x)=f\left(x^{t}\right)+\left\langle\nabla f\left(x^{t}\right), x-x^{t}\right\rangle+\frac{L}{2}\left\|x-x^{t}\right\|^{2} .
$$

Indeed, $\nabla f^{t}(x)=\nabla f\left(x^{t}\right)+L\left(x-x^{t}\right)=0$ if and only if $x=x^{t}-\frac{1}{L} \nabla f\left(x^{t}\right)$.

In general, when the function is not differentiable, one can try to use the first order approximation of f at x^{t}, that is,

$$
f^{t}(x)=f\left(x^{t}\right)+\left\langle\nabla f\left(x^{t}\right), x-x^{t}\right\rangle .
$$

Then $f^{t}(x) \leqslant f(x)$ and f^{t} gives a descent approximation of f in a small neighborhood x^{t}. The resulting updating rule will be

$$
x^{t+1}=\arg \min _{x \in K}\left\{f\left(x^{t}\right)+\left\langle\nabla f\left(x^{t}\right), x-x^{t}\right\rangle\right\} .
$$

Regularizers III

Example

$K=[-1,1]$ amd $f(x)=x^{2}$
\Rightarrow The algorithm is way too aggressive as it jumps between -1 and +1 indefinitely.
[Even worse: if K is ubounded, then the minimum is not attained at any finite point!]

Idea: Add a term involving a distance function $D: K \times K \rightarrow \mathbb{R}$ that does not allow x^{t+1} to land far away from x^{t}. More precisely,

$$
\begin{aligned}
x^{t+1} & =\arg \min _{x \in K}\left\{D\left(x, x^{t}\right)+\eta\left(f\left(x^{t}\right)+\left\langle\nabla f\left(x^{t}\right), x-x^{t}\right\rangle\right)\right\} \\
& =\arg \min _{x \in K}\left\{D\left(x, x^{t}\right)+\eta\left\langle\nabla f\left(x^{t}\right), x\right\rangle\right\} .
\end{aligned}
$$

Remark: By picking large η, the significance of the regularizer is reduced. By picking small η, we force x^{t+1} to stay close to x^{t}.

Kullback-Leibler divergence

Objective: $\min _{p \in \Delta_{n}} f(p)$, where $\Delta_{n}=\left\{p \in[0,1]^{n}: \sum_{i=1}^{n} p_{i}=1\right\}$ is the probability simplex.

Recall that

$$
p^{t+1}=\arg \min _{p \in \Delta_{n}}\left\{D\left(p, p^{t}\right)+\eta\left\langle\nabla f\left(p^{t}\right), p\right\rangle\right\} .
$$

For two probability distributions, $p, q \in \Delta_{n}$, their Kullback-Leibler divergence is defined as

$$
D_{K L}(p, q)=-\sum_{i=1}^{n} p_{i} \log \frac{q_{i}}{p_{i}} .
$$

Remarks:

- $D_{K L}$ is not symmetric
- $D_{K L}(p, q) \geqslant 0$

Lemma

Consider any vector $q \in \mathbb{R}_{\geqslant 0}^{n}$ and a vector $g \in \mathbb{R}^{n}$. Define $w_{i}^{*}=q_{i} e^{-\eta g_{i}}$ for $i=1, \ldots, n$. Then $\arg \min _{p \in \Delta_{n}}\left\{D_{K L}(p, q)+\eta\langle g, p\rangle\right\}=\frac{w^{*}}{\left\|w^{*}\right\|_{1}}$.

Exponential gradient descent

Algorithm

(1) Initialize $p^{1}=\frac{1}{n} \mathbb{1}$ (uniform distribution).
(2) Repeat for $t=1, \ldots, T$:

- Obtain $g^{t}=\nabla f\left(p_{t}\right)$.
- Let $w^{t+1} \in \mathbb{R}^{n}$ and $p^{t+1} \in \Delta_{n}$ be defined as

$$
w_{i}^{t+1}=p_{i}^{t} e^{-\eta g_{i}^{t}} \text { and } p_{i}^{t+1}=\frac{w_{i}^{t+1}}{\sum_{j=1}^{n} w_{j}^{t+1}} .
$$

(3) Output $\bar{p}=\frac{1}{T} \sum_{t=1}^{T} p^{t}$.

Thm.

Suppose that $f: \Delta_{n} \rightarrow \mathbb{R}$ is a convex function which satisfies $\|\nabla f(p)\| \leqslant G$ for all $p \in \Delta_{n}$. If we set $\eta=\Theta\left(\frac{\sqrt{\log n}}{\sqrt{T} G}\right)$, then after $T=\Omega\left(\frac{G^{2} \log n}{\varepsilon^{2}}\right)$ iterations of the algorithm, the point $\bar{p}=\frac{1}{T} \sum_{t=1}^{T} p^{t}$ satisfies $f(\bar{p}) \leqslant f\left(p^{*}\right)+\varepsilon$.

Multiplicative weights update

The analysis of the exponential gradient descent algorithm reveals that one can work with arbitrary vectors g^{t} instead of the gradients of f.

Algorithm

(1) Initialize $p^{1}=\frac{1}{n} \mathbb{1}$ (uniform distribution).
(2) Repeat for $t=1, \ldots, T$:

- Obtain g^{t} from the oracle.
- Let $w^{t+1} \in \mathbb{R}^{n}$ and $p^{t+1} \in \Delta_{n}$ be defined as

$$
w_{i}^{t+1}=p_{i}^{t} e^{-\eta s_{i}^{t}} \text { and } p_{i}^{t+1}=\frac{w_{i}^{t+1}}{\sum_{j=1}^{n} w_{j}^{t+1}} .
$$

(3) Output $p^{1}, \ldots, p^{T} \in \Delta_{n}$

Thy.

Assume that $\left\|g^{t}\right\| \leqslant G$ for $t=1, \ldots, T$. If we set $\eta=\Theta\left(\frac{\sqrt{\log n}}{\sqrt{T} G}\right)$, then after $T=\Theta\left(\frac{G^{2} \log n}{\varepsilon^{2}}\right)$ iterations we have $\frac{1}{T} \sum_{i=1}^{T}\left\langle g^{t}, p^{t}\right\rangle \leqslant$ $\min _{p \in \Delta_{n}} \frac{1}{T} \sum_{i=1}^{T}\left\langle g^{t}, p\right\rangle+\varepsilon$.

Regularizers revisited

Update rule: $x^{t+1}=\arg \min _{x \in K}\left\{D\left(x, x^{t}\right)+\eta\left\langle\nabla f\left(x^{t}\right), x\right\rangle\right\}$.
The Bregman divergence of a function $f: K \rightarrow \mathbb{R}$ at $u, w \in K$ is defined to be

$$
D_{f}(u, w)=f(u)-(f(w)+\langle\nabla f(w), u-w\rangle)
$$

Remark: The Kullback-Leibler divergence is the Bregman divergence corresponding to the function $H(x)=\sum_{i=1}^{n} x_{i} \log x_{i}-x_{i}$.

For any convex regularizer $R: \mathbb{R}^{n} \rightarrow \mathbb{R}$, by denoting the gradient at step t by g^{t}, we have

$$
\begin{aligned}
x^{t+1} & =\arg \min _{x \in K}\left\{D_{R}\left(x, x^{t}\right)+\eta\left\langle g^{t}, x\right\rangle\right\} \\
& =\arg \min _{x \in K}\left\{\eta\left\langle g^{t}, x\right\rangle+R(x)-R\left(x^{t}\right)-\left\langle\nabla R\left(x^{t}\right), x-x^{t}\right\rangle\right\} \\
& =\arg \min _{x \in K}\left\{R(x)-\left\langle\nabla R\left(x^{t}\right)-\eta g^{t}, x\right\rangle\right\} .
\end{aligned}
$$

Suppose that there exists w^{t+1} such that $\nabla R\left(w^{t+1}\right)=\nabla R\left(x^{t}\right)-\eta g^{t}$. Then

$$
\begin{aligned}
x^{t+1} & =\arg \min _{x \in K}\left\{R(x)-\left\langle\nabla R\left(x^{t}\right)-\eta g^{t}, x\right\rangle\right\} \\
& =\arg \min _{x \in K}\left\{R(x)-R\left(w^{t+1}\right)+\left\langle\nabla R\left(w^{t+1}\right), x\right\rangle\right\} \\
& =\arg \min _{x \in K}\left\{D_{R}\left(x, w^{t+1}\right)\right\} . \quad\left(D_{R} \text {-projection of } w^{t+1} \text { onto } K\right)
\end{aligned}
$$

Mirror descent I

Assume that the regularizer $R: \Omega \rightarrow \mathbb{R}^{n}$ has a domain Ω which contains K as a subset. Furthermore, assume that $\nabla R: \Omega \rightarrow \mathbb{R}^{n}$ is a bijection (mirror map).

Algorithm

Input: 1st-order oracle access to convex $f: K \rightarrow \mathbb{R}$, oracle access to ∇R and its inverse, projection operator w.r.t. $D_{R}(\cdot, \cdot)$, initial point $x^{1} \in K$, parameter $\eta>0$, integer $T>0$.
(1) Repeat for $t=1, \ldots, T$:

- Obtain $g^{t}=\nabla f\left(p_{t}\right)$.
- Let w^{t+1} be such that $\nabla R\left(w^{t+1}\right)=\nabla R\left(x^{t}\right)-\eta \nabla f\left(x^{t}\right)$.
- Set $x^{t+1}=\arg \min _{x \in K} D_{R}\left(x, w^{t+1}\right)$.
(2) Output $\bar{x}=\frac{1}{T} \sum_{t=1}^{T} x^{t}$.

Remarks:

- The mirror map ∇R and its inverse should be efficiently computable.
- The projection step arg $\min _{x \in K} D_{R}\left(x, w^{t+1}\right)$ should be computationally easy to perform.

Mirror descent II

Thm.

Let $f: K \rightarrow \mathbb{R}$ and $R: \Omega \rightarrow \mathbb{R}$ be convex functions with $K \subseteq \Omega \subseteq \mathbb{R}^{n}$. Suppose that the gradient map $\nabla R: \Omega \rightarrow \mathbb{R}^{n}$ is a bijection, $\|\nabla f(x)\| \leqslant G$ for $x \in K$ (bounded gradient), and that $D_{R}(x, y) \geqslant \frac{\sigma}{2}\|x-y\|^{* 2}$ for $x \in \Omega$ (R is σ-strongly convex w.r.t. dual norm $\left.\|\cdot\|^{*}\right)$.
If we set $\eta=\Theta\left(\frac{\sqrt{\sigma D_{R}\left(x^{*}, x^{1}\right)}}{\sqrt{T} G}\right)$, then after $T=\Theta\left(\frac{G^{2} D_{R}\left(x^{*}, x^{1}\right.}{\sigma \varepsilon^{2}}\right)$ iterations the point \bar{x} satisfies $f(\bar{x}) \leqslant f\left(x^{*}\right)+\varepsilon$.

Reading assignment

(國 N. Vishnoi. Algorithms for convex optimization.

- Chapter 6
- Chapter 7
R.C. Lau. Convexity and optimization.
- Lecture 7

Exercises

(1) Let $G=(V, E)$ be an undirected graph and $s, t \in V$. Consider the following problem:

$$
\begin{array}{ll}
\quad \min & \sum_{u v \in E}\left|x_{u}-x_{v}\right| \\
\text { s.t. } \quad & x_{s}-x_{t}=1
\end{array}
$$

This is not a linear program in this form. Rewrite it as a linear program. (1pt)
(2) Let us consider the following functions:

$$
\begin{aligned}
& f_{1}\left(w_{1}, w_{2}\right)=\frac{1}{2} w_{1}^{2}+\frac{7}{2} w_{2}^{2}, \text { and } \\
& f_{2}\left(w_{1}, w_{2}\right)=100\left(w_{2}-w_{1}^{2}\right)^{2}+\left(1-w_{1}\right)^{2} \quad \text { (Rosenbrock's function). }
\end{aligned}
$$

(a) Calculate the gradients of the functions. (2pts)
(b) Are these function convex? (2pts)

C Determine the global minimum of the functions. (2pts)
(d) Choose a starting point $w=\left(w_{1}, w_{2}\right)$ within distance 5 from an optimal solution, and perform one step of the Gradient descent algorithm. (2pts)
(3) Given a convex, differentiable function $F: K \rightarrow \mathbb{R}$ over a convex subset K of \mathbb{R}^{n}, the Bergman divergence of $x, y \in K$ is defined as

$$
D_{F}(x, y)=F(x)-F(y)-\langle\nabla F(y), x-y\rangle .
$$

Prove that $D_{F}(x, y) \geqslant 0$. (1pt)

