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Objective: minycgr~ f(x) (unconstrained setting)
Model: 1st-order oracle is given, i.e., we can query the gradient at any point.

Solution: Given ¢ > 0, output a point x € R" s.t. f(x) < y* + ¢, where y*
denotes the optimal value.

® The running time will be proportional to 1/¢, hence it is not polynomial.
However, we will see that in this setting one cannot obtain polynomial time
algorithms.

Remark: As f is convex, a local minimum is a global minimum. So as long as
we can find a point to decrease the objective value, we are making progress and
we won't get stuck. But how to decrease the objective?



Gradient descent

Not a single method, but a general framework.
Scheme:

@ Choose a starting point x; € R".
® Suppose xi,...,x; are computed. Choose x;,1 as a linear combination of
x¢ and V£(x).
© Stop once a certain stopping criterion is met and output the last iterate.
If T is the total number of iterations, then the running time is O(T - M(x)),
where M(x) is the time of each update.
® The update time M(x) cannot be optimized below a certain level.

® The main goal is to keep T as small as possible.



Why using the gradient? |

We only have local information about x = a reasonable idea is to pick a
direction which locally provides the largest drop in the function value.

Formally: Pick a unit vector u for which a ‘tiny’ (&) step in direction u
maximizes

f(x) — f(x + du).

This leads to the optimization problem
f(x)—f
o || [ f(x) = f(x +du)
llul|=1 |s6—0+ 0
By the Taylor approximation of f, the limit is simply the directional derivative
of f at x in direction v, thus

max [—(Vf(x), u)].

llull=1



Cauchy-Schwarz inequality

Cauchy-Schwarz inequality

For all x,y € R”, we have (x,y) < [|x]|[|y|.

Proof sketch.

Assuming x, y € R?, we know that (x,y) = ||x||||y| cos @, where @ is the angle
between x and y. In higher dimensions, intuitively, the two vectors x and y form
together a subspace of dimension at most 2 that can be thought of as R2. [



Why using the gradient? Il

Recall: max,j—1 [-(VF(x), u)]

From the Cauchy-Schwarz inequality, we get

—(VE(x), u) <[[VE) ]l = IVFEI,
and equality holds if u = —%.

= Moving in the direction of the negative gradient is an instantaneously good

strategy - called the gradient flow:
dx V£ (x)

dt V()|
Question: How to implement the strategy on a computer?

Natural discretization:

Vi(xt)
Xt4l — Xy — RN
’ IVF ()l P
; : ! — 5
where o > 0 is the ‘step length’. More generally, W}%’/ i

gt
T
i

Xer1 = xe — NVI(xt),

where 77 > 0 is a parameter.



Step length: Ideally, we would like to take big steps. This results in smaller
number of iterations, but the function can change dramatically, leading to a
large error.

Solution: Assumptions on certain regularity parameters.

@ Lipschitz gradient. For every x, y € R” we have
[VF(x) = V)l < Llix =yl
This is also sometimes referred to as L-smoothness of f.

= Around x, the gradient changes in a controlled manner; we can take
larger step size.

® Bounded gradient. For every x € R” we have
IVE(x)I < G.
This implies that f is G-Lipschitz.
= The function can go towards infinity in a controlled manner.
©® Good initial point. A point x; is provided such that ||x; — x*|| < D,
where x* is some optimal solution.



Lipschitz gradient

Given a first-order oracle access to an L-Lipschitz convex function f : R"” — R,
an initial point x; € R"” with ||x; — x*|| < D, and € > 0, there is an algorithm
the outputs a point x € R” such that f(x) < f(x*) + . The algorithm makes
T=0 (L%z) queries to the oracle and performs O(nT) arithmetic operations.

Algorithm A .
® Lot 7= 0(F) i,
® Let 1= 7. _ [
© Repeat for t =1,..., T —1: .

® X1 = xe — NV I(xe). y //2)1“
© Output x7. 3 “~~ 74 o



Lipschitz gradient

Consider any algorithm for solving the convex unconstrained minimization prob-
lem minyern f(x) in the first-order model, when f has Lipschitz gradient with
constant L and the initial point x; € R" satisfies ||[x; — x*|| < D. There is a

function f such that
12}2T (XI) XE]IIQ" (X) - T2

= The theorem translates to a lower bound of Q(%) iterations to reach an

e-optimal solution.

Is there a method which matches the % iterations bound? Yes!

Nesterov’s accelerated gradient descent algorithm

Under the same assumptions, there is an algorithm the outputs a point x € R”
such that f(x) < f(x*) + ¢, makes T = O(%) queries to the oracle, and
performs O(nT) arithmetic operations.




Constrained setting - projection

Objective: min,cx f(x) (constrained setting)

= The next iterate x;+1 might fall outside of K, hence we need to project it
back onto K, that is,

Xe+1 = Projk(xe — e - VF(xt)).
Difficulty: The projection may or may not be computationally expensive to

perform.

Thm.

Given a first-order oracle access to a convex function f : R” — R with an L-
Lipschitz gradient, oracle access to a projection operator proj, onto a convex
set K C R”, an initial point x; € R” with ||[x — x*|| < D, and € > 0, there
is an algorithm the outputs a point x € R” such that f(x) < f(x*) +¢&. The
algorithm makes T = O (%) queries to the first-order and the projection

oracles and performs O(nT) arithmetic operations.




Regularizers |

The Lipschitz gradient algorithm leaves out convex functions which are
non-differentiable, such as f(x) = Y7, x| or f(x) = max{|x1|,...,|xn|}.

Let's reconsider how to choose the next point to converge quickly?
Obvious choice: x*™! = arg min, f(x)
= Coverges quickly to x* (in one step). Yet, it is not very helpful as xt*1 is

hard to compute.

Idea: Construct a function f* that approximates f in a certain sense and is

easy to minimize. The update rule becomes

X = arg min, ¢ F1(x).

= Intuitively, if f* becomes more and more accurate, the sequence of iterates
should converge to x*.



Regularizers |1

Example
The Lipschitz gradient algorithm corresponds to the choice

F(x) = () + (TF(), x = x) + 2 = 1P

Indeed, VFi(x) = Vf(x!) 4+ L(x — x*) = 0 if and only if x = x* — L VF(x").

In general, when the function is not differentiable, one can try to use the first
order approximation of f at x?, that is,
fi(x) = f(x") + (VF(x"), x — x*).

Then ff(x) < f(x) and f* gives a descent approximation of f in a small
neighborhood x*. The resulting updating rule will be
x = arg min, {F(x") + (VF(x), x — x")}.



Regularizers Il

Example

K =[-1,1] amd f(x) = x? ] &

= The algorithm is way too aggressive as it
jumps between —1 and +1 indefinitely.

[Even worse: if K is ubounded, then the mini-
mum is not attained at any finite point!]

N

Idea: Add a term involving a distance function D : K x K — R that does not
allow x'*! to land far away from xt. More precisely,

Xt = arg min,c {D(x, x*) + n(f(x*) + (VF(x"),x — x"))}
= arg min,ex {D(x, x*) + n(VF(x*),x)}.

Remark: By picking large 7, the significance of the regularizer is reduced. By
picking small 7, we force x!™! to stay close to x°.



Kullback-Leibler divergence

Objective: minpea, f(p), where A, = {p € [0,1]": >, p; = 1} is the
probability simplex.

Recall that
pttl — argmin,ca {D(p, p") +n(VFf(p"),p)}.

For two probability distributions , p, g € A, their Kullback-Leibler divergence
is defined as

Dki(p,q Z pi Iog -

Remarks:

® Dy, is not symmetric

® Dki(p,q) =20
Lemma
Consider any vector g € R, and a vector g € R". Define W = g;e "8 for
i=1,...,n. Then argmin,ca {Dki(p,q) +n(g,p)} = Hw*Hl .



Exponential gradient descent

Algorithm

@ Initialize p! = 11 (uniform distribution).
® Repeat fort=1,..., T:
® Obtain g' = Vf(p:).
® let w'™ € R" and p'™ € A, be defined as
t+1

t —ngt t+1 _ Wi
i =pie " and i = g
Zj:le

_ T
© Output g = % Yo P

Suppose that f : A, — R is a convex function which satisfies |Vf(p)|| < G
forallpe A, Ifwesetn =0 ( v '°g”>, then after T = Q (%) iterations

VTG
of the algorithm, the point 5 = + Z;l pt satisfies f(p) < f(p*) +&.




Multiplicative weights update

The analysis of the exponential gradient descent algorithm reveals that one can

work with arbitrary vectors g* instead of the gradients of f.
Algorithm

@ Initialize p! = 11 (uniform distribution).
® Repeat fort=1,..., T:

® Obtain g* from the oracle.

® |et w'™ € R" and p'™ € A, be defined as

t+1 t_—ngt d pit? witt
A = p;e " and p; = ’71
’ ’ Yiaw”
® Output p',...,p" € A,

Assume that ||g*|| < G for t

then after T

1,...,T. If we set n

= O (%) iterations we have 13°7 (gt p
: T
MiNpea, % Zi:1<gt7 p) +e.




Regularizers revisited

Update rule: x'™ = argmin ., {D(x, x*) + n(Vf(x*),x)}.

The Bregman divergence of a function f : K — R at u, w € K is defined to be
D¢ (u, w) = f(u) = (f(w) + (VF(w), u — w)).

Remark: The Kullback-Leibler divergence is the Bregman divergence

corresponding to the function H(x) = Y7, x; log x; — x;.

For any convex regularizer R : R” — R, by denoting the gradient at step t by
gt, we have
Xt = argmin,c {Dr(x, x*) +n{g*, x)}

— arg min, i {n(g", x) + R(x) — R(x*) = (VR(x"), x — x'}}

— arg min, ., {R(x) — (VR(x') - g*,x)}.
Suppose that there exists wt™! such that VR(w!t!) = VR(x!) — ngt. Then

xH = argmin, e {R(x) — (VR(x") — ng*,x)}
= argmin,c {R(x) — R(w* ) + (VR(w'1),x)}

= argmin, ¢ {Dr(x, w'th)}. (Dg-projection of w'™ onto K)



Mirror descent |

Assume that the regularizer R : Q — R"” has a domain Q which contains K as a
subset. Furthermore, assume that VR : Q — R” is a bijection (mirror map).

Algorithm

Input: 1st-order oracle access to convex f : K — R, oracle access to VR and
its inverse, projection operator w.r.t. Dg(:,-), initial point x} € K, parameter
n >0, integer T > 0.

@ Repeat fort=1,..., T:
® Obtain g' = Vf(p:).
® Let w''! be such that VR(w'™) = VR(x") — nVF(x").

® Set x'™' = argmin ., Dr(x, w'?).

® Output x = L 3] xt.

Remarks:

® The mirror map VR and its inverse should be efficiently computable.
® The projection step arg min, ., Dr(x, w'™) should be computationally
easy to perform.



Mirror descent Il

Thm.

Let f : K — R and R : Q — R be convex functions with K C Q C R".
Suppose that the gradient map VR : Q — R” is a bijection, || Vf(x)| < G for
x € K (bounded gradient), and that Dg(x,y) > §|x — y[|** for x € Q (R is

o-strongly convex w.r.t. dual norm | - ||*).
D * 1 2 * 1 . .
If we set n =0 (VU\;%XGX)> then after T = © (%) iterations the

point X satisfies 7(X) < f(x*) + .




Reading assignment

@ N. Vishnoi. Algorithms for convex optimization.

® Chapter 6
® Chapter 7

[d L.C. Lau. Convexity and optimization.

® |ecture 7


https://convex-optimization.github.io/
https://cs.uwaterloo.ca/~lapchi/cs798/notes.html

Exercises

@ Let G = (V, E) be an undirected graph and s,t € V. Consider the following problem:

min Z [xu — xv|

uveE
st. xs—xx=1
This is not a linear program in this form. Rewrite it as a linear program. (1pt)

@® Let us consider the following functions:
1 7
fi(wi, wa) :§W12 + szz,and

fa(wi, wa) =100(wa — w?)? + (1 — wy)? (Rosenbrock’s function).
® Calculate the gradients of the functions. (2pts)
O Are these function convex? (2pts)
® Determine the global minimum of the functions. (2pts)
® Choose a starting point w = (w1, wz) within distance 5 from an optimal
solution, and perform one step of the Gradient descent algorithm. (2pts)

© Given a convex, differentiable function F : K — R over a convex subset K of R”, the
Bergman divergence of x,y € K is defined as

De(x,y) = F(x) = F(y) = (VF(y), x = y)-
Prove that De(x,y) > 0. (1pt)
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