Optimization

Fall semester 2022/23

Kristóf Bérczi

Eötvös Loránd University
Institute of Mathematics
Department of Operations Research

Lecture 3: Convexity

Convex sets

A set $K \subseteq \mathbb{R}^{n}$ is convex if for all $x, y \in K$ and $\theta \in[0,1]$, we have

$$
\theta x+(1-\theta) y \in K
$$

Examples:

- Polytopes: $K=\left\{x \in \mathbb{R}^{n}:\left\langle a_{i}, x\right\rangle \leqslant b_{i}\right.$ for $\left.i=1, \ldots, m\right\}$, where $a_{i} \in \mathbb{R}^{n}$ and $b_{i} \in \mathbb{R}$ for $i=1, \ldots, m$.
- Ellipsoids: $K=\left\{x \in \mathbb{R}^{n}: x^{\top} A x \leqslant 1\right.$ where $A \in \mathbb{R}^{n \times n}$ is a positive definite matrix.
- Balls (in ℓ_{p} norms for $p \geqslant 1$): $K=\left\{x \in \mathbb{R}^{n}: \sqrt[p]{\sum_{i=1}^{n}\left|x_{i}-a_{i}\right|^{p}} \leqslant 1\right\}$, where $a \in \mathbb{R}^{n}$ is a vector.

Convex functions

A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex if its domain is a convex set and for all $x, y \in K$ and $\theta \in[0,1]$, we have

$$
f(\theta x+(1-\theta) y) \leqslant \theta f(x)+(1-\theta) f(y) .
$$

If the inequality always holds as strict inequality, the function is strictly convex.

The function f is concave or strictly concave if $-f$ is convex or strictly convex, respectively.

Remark: If $f: K \rightarrow \mathbb{R}^{n}$ is a convex function, then setting $f(x)=+\infty$ for $x \notin K$ results in a convex function when the arithmetic operations on $\mathbb{R} \cup\{+\infty\}$ are interpreted in the reasonable way.

Semidefinite matrices

A matrix $M \in \mathbb{R}^{n \times n}$ is symmetric if $M^{T}=M$.
The identity matrix of size $n \times n$ is denoted by I_{n}.
A symmetric matrix M is positive semidefinite (PSD) if $x^{\top} M x \geqslant 0$ holds for all $x \in \mathbb{R}^{n}$, and this is denoted by $M \succeq 0$.
M is positive definite (PD) if $x^{T} M X>0$ holds for all non-zero $x \in \mathbb{R}^{n}$, and this is denoted by $M \succ 0$.

We define $M \succeq N \Leftrightarrow M-N \succeq 0$ and $M \succ N \Leftrightarrow M-N \succ 0$.

Calculus I

We are working with 'sufficiently smooth' functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
The derivative of $f\left(x_{1}, \ldots, x_{n}\right)$ is called the gradient, and is defined as

$$
\nabla f(x)=\left[\frac{\partial f}{\partial x_{1}}(x), \ldots, \frac{\partial f}{\partial x_{n}}(x)\right]
$$

The directional derivative of f in the direction d is $\langle\nabla f(x), d\rangle$.
The second derivatives of f can be summerized in the Hessian matrix

$$
\left[\begin{array}{cccc}
\frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \\
\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{1}^{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}} \\
\vdots & \vdots & \ddots & \cdots \\
\frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{n}^{2}}
\end{array}\right]
$$

Remark: The Hessian is symmetric if f is sufficiently differentiable.

Calculus II

Taylor expansion

The Taylor series expansion of f around $x=a$ is

$$
f(x)=\underbrace{f(a)+\langle\nabla f(a), x-a\rangle}_{\text {second order approximation }}+\frac{1}{2}(x-a)^{T} \nabla^{2} f(a)(x-a)+\ldots
$$

Consider a function in one dimension, i.e. $f: \mathbb{R} \rightarrow \mathbb{R}$.

When f is convex, the tangent is 'below' the graph, i.e.

$$
f(y) \geqslant f(x)+f^{\prime}(x)(y-x)
$$

First order condition

First order condition

Let f be a differentiable function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ over a convex set K. Then f is convex if and only if for all $x, y \in K$

$$
f(y) \geqslant f(x)+\langle\nabla f(x), y-x\rangle .
$$

Proof of the one-dimensional case.

\Rightarrow For any $\theta \in[0,1]$, we have

$$
(1-\theta) f(x)+\theta f(y) \geqslant f(\theta y+(1-\theta) x)=f(x+\theta(y-x)) .
$$

Subtracting $(1-\theta) f(x)$ and dividing by θ yields

$$
f(y) \geqslant f(x)+\frac{f(x+\theta(y-x))-f(x)}{\theta}
$$

Taking limit $\theta \rightarrow 0$ gives $f(y) \geqslant f(x)+\langle\nabla f(x), y-x\rangle$.

First order condition

First order condition

Let f be a differentiable function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ over a convex set K. Then f is convex if and only if for all $x, y \in K$

$$
f(y) \geqslant f(x)+\langle\nabla f(x), y-x\rangle .
$$

Proof of the one-dimensional case.

\Leftarrow Let $z=\theta x+(1-\theta) y$. The first order approximation underestimates both $f(x)$ and $f(y)$, hence

$$
\begin{aligned}
& f(x) \geqslant f(z)+\nabla(z)^{T}(x-z), \\
& f(y) \geqslant f(z)+\nabla(z)^{T}(y-z) .
\end{aligned}
$$

Therefore

$$
(1-\theta) f(x)+\theta f(y) \geqslant f(z)+\nabla f(z)^{T}(\theta x+(1-\theta) y-z)=f(\theta(y)+(1-\theta) x) .
$$

Second order condition

In the one-dimensional case, $f^{\prime \prime}(x) \geqslant 0$ when f is convex, that is, the slope of the tangent is non-decreasing, as otherwise when the slope decreases the function becomes non-convex.

Second order condition

Let f be twice differentiable such that $\operatorname{dom} f$ is open. Then f is convex if and only if $\nabla^{2} f(x) \succeq 0$ for all $x \in \operatorname{dom} f$.

Local vs. global optimum I

Convex optimization problem:

$$
\inf _{x \in K} f(x) \xrightarrow{\text { usually }} \min _{x \in K} f(x)
$$

Intuition: $\nabla f(x)=0$ when x is optimal.
Problem: $\nabla f(x)=0$ may correspond to a local optimum/maximum.

Global optimum

If the domain of a convex differentiable function f is \mathbb{R}^{n}, then x is an optimal solution to $\inf _{x \in \mathbb{R}^{n}} f(x)$ if and only if $\nabla f(x)=0$.

Local vs. global optimum II

Proof of the 'if' direction.

Assume that $\nabla f\left(x_{0}\right)=0$. Since f is convex, we know that for all $y \in \mathbb{R}^{n}$ we have

$$
\begin{aligned}
f(y) & \geqslant f\left(x_{0}\right)+\left\langle\nabla f\left(x_{0}\right), y-x_{0}\right\rangle \\
& =f\left(x_{0}\right)+\left\langle 0, y-x_{0}\right\rangle \\
& =f\left(x_{0}\right)
\end{aligned}
$$

Remark: In the constrained setting, i.e. when $K \neq \mathbb{R}^{n}$, the following holds.

Global optimum

If f is a convex differentiable function, then x is an optimal solution to $\inf _{x \in \mathbb{R}^{n}} f(x)$ if and only if $\langle\nabla f(x), y-x\rangle \geqslant 0$ for all $y \in \mathbb{R}^{n}$.

Convex programs

A convex program can be written as follows.

Convex program

$\inf f_{0}(x)$
s.t. $f_{i}(x) \leqslant 0$ for $1 \leqslant i \leqslant m$

$$
h_{j}(x)=0 \text { for } 1 \leqslant j \leqslant p
$$

Remark: The domain of the problem is $D:=\left(\bigcap_{i=0}^{m} \operatorname{dom} f_{i}\right) \cap\left(\bigcap_{j=1}^{p} \operatorname{dom} h_{j}\right)$, which is a convex set \Rightarrow Roughly speaking, this makes the problem tractable.

Question: Can we define a dual program? How to give a lower bound?

Dual programs I

Idea: "move the constraints into the objective function"
The Lagrangian associated with the problem is

$$
L(x, \lambda, \mu):=f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)+\sum_{j=1}^{p} \mu_{j} h_{j}(x),
$$

where the $\lambda_{i} \mathrm{~s}$ and $\mu_{j} \mathrm{~s}$ are called Lagrangian multipliers, and $\lambda \in \mathbb{R}^{m}$ and $\mu \in \mathbb{R}^{p}$ are called the dual variables.

The Lagrangian dual function is the min value of the Lagrangian over x,

$$
g(\lambda, \mu):=\inf _{x} L(x, \lambda, \mu) .
$$

Dual programs II

Let $O P T_{P}$ denote the optimum value of the primal problem, and let \hat{x} be an arbitrary feasible solution. Furthermore, assume that $\lambda \geqslant 0$. Then

$$
g(\lambda, \mu) \leqslant f_{0}(\hat{x})+\sum_{i=1}^{m} \lambda_{i} f_{i}(\hat{x})+\sum_{j=1}^{p} \mu_{j} h_{j}(\hat{x})
$$

$$
\leqslant f_{0}(\hat{x})
$$

hence $g(\lambda, \mu) \leqslant \inf _{x \text { feasible }} f_{0}(x)=O P T_{P}$.

Conclusion:

- This gives a lower bound when $\lambda \geqslant 0$ and $g(\lambda, \mu)>-\infty \Rightarrow$ Such a pair λ, μ is called dual feasible.

Weak duality

The goal is to get the best lower bound on $O P T_{P}$ using the Lagrangian dual.
The dual program is thus defined as

Dual program

$$
\begin{gathered}
\max g(\lambda, \mu) \\
\text { s.t. } \lambda \geqslant 0
\end{gathered}
$$

Let $O P T_{D}$ denote the optimal value of the dual. Then weak duality holds by construction, that is, $O P T_{D} \leqslant O P T_{P}$.

Remarks:

- The dual program is always convex, regardeless of the primal.
- That is, for any primal program (even though non-convex), we can always write a convex program that gives a lower bound on the primal objective value.

Strong duality

Question: Does $O P T_{D}=O P T_{P}$ always holds?
Answer: Unfortunately NOT. But!
The Slater's condition requires that there is $x \in \operatorname{rel} \operatorname{int}(D)$ such that $f_{i}(x)<0$ for $1 \leqslant i \leqslant m$ and $h_{j}(x)=0$ for $1 \leqslant j \leqslant p$.
(That is, the exists an interior point in the domain, which is a feasible solution, and satisfies the non-affine inequality constraints strictly.)

Strong duality

If Slater's condition holds, then $O P T_{D}=O P T_{P}$.

Complementary slackness

Assume that $O P T_{D}=O P T_{P}$. Let x^{*} be a primal, λ^{*}, μ^{*} be dual optimal solutions. Then

$$
\begin{aligned}
f_{0}\left(x^{*}\right) & =g\left(\lambda^{*}, \mu^{*}\right) \\
& =\inf _{x} L\left(x, \lambda^{*}, \mu^{*}\right) \\
& \leqslant L\left(x^{*}, \lambda^{*}, \mu^{*}\right) \\
& =f_{0}\left(x^{*}\right)+\sum_{i=1}^{m} \lambda_{i}^{*} f_{i}\left(x^{*}\right)+\sum_{j=1}^{p} \mu_{j}^{*} h_{j}\left(x^{*}\right) \\
& \leqslant f_{0}\left(x^{*}\right),
\end{aligned}
$$

as $\lambda \geqslant 0$ (dual feasible) and $f_{i}\left(x^{*}\right) \leqslant 0, h_{j}\left(x^{*}\right)=0$ (primal feasible).
Therefore

- x^{*} is a minimizer of $L\left(x, \lambda^{*}, \mu^{*}\right)$, and
- $\lambda_{i}^{*} f_{i}\left(x^{*}\right)=0$ for $1 \leqslant i \leqslant m$, called the complementary slackness condition, meaning that the non-zero pattern of λ_{i}^{*} and $f_{i}\left(x^{*}\right)$ must be complementary.

Karush-Kuhn-Tucker (KKT) conditions I

Assume that $f_{0}, f_{1}, \ldots, f_{m}, h_{1}, \ldots, h_{p}$ are all differentiable.
Since x^{*} minimize $L\left(x, \lambda^{*}, \mu^{*}\right)$ by the above, the gradient of L at x^{*} must be zero, that is,

$$
\nabla f_{0}\left(x^{*}\right)+\sum_{i=1}^{m} \lambda_{i}^{*} \nabla f_{i}\left(x^{*}\right)+\sum_{j=1}^{p} \mu_{j}^{*} \nabla h_{j}\left(x^{*}\right)=0 .
$$

To sum up, the following are some necessary conditions for any pair of primal and dual optimal solutions.

Primal feasibility: $f_{i}\left(x^{*}\right) \leqslant 0$ for $1 \leqslant 1 \leqslant m, h_{j}\left(x^{*}\right)=0$ for $1 \leqslant j \leqslant p$.
Dual feasibility: $\lambda_{i}^{*} \geqslant 0$ for $1 \leqslant i \leqslant m$.
Complementary slackness: $\lambda_{i}^{*} f_{i}\left(x^{*}\right)=0$ for $1 \leqslant i \leqslant m$.
Lagrangian optimality: $\nabla f_{0}\left(x^{*}\right)+\sum_{i=1}^{m} \lambda_{i}^{*} \nabla f_{i}\left(x^{*}\right)+\sum_{j=1}^{p} \mu_{j}^{*} \nabla h_{j}\left(x^{*}\right)=0$.
This set of conditions is called the KKT conditions.

Karush-Kuhn-Tucker (KKT) conditions II

When the primal problem is convex, the KKT conditions are also sufficient! \Rightarrow Any $x^{*}, \lambda^{*}, \mu^{*}$ satisfying KKT must be primal and dual optimal solutions.

Reason: If the primal is convex, then $L(x, \lambda, \mu)$ is convex in x when λ, μ are fixed. Hence a local optimal solution is also a global optimal solution. More precisely:

$$
\begin{aligned}
g\left(\lambda^{*}, \mu^{*}\right) & =\inf _{x} L\left(x, \lambda^{*}, \mu^{*}\right) \\
& =L\left(x^{*}, \lambda^{*}, \mu^{*}\right) \\
& =f_{0}\left(x^{*}\right)+\sum_{i=1}^{m} \lambda_{i}^{*} f_{i}\left(x^{*}\right)+\sum_{j=1}^{p} \mu_{j}^{*} h_{j}\left(x^{*}\right) \\
& =f_{0}\left(x^{*}\right) .
\end{aligned}
$$

Summary: For a convex problem with differentiable functions, if Slater's condition is satisfied, then the KKT conditions are necessary and sufficient for optimality.

Reading assignment

N. Vishnoi. Algorithms for convex optimization.

- Chapter 1
- Chapter 2
- Chapter 3
- Chapter 4
- Chapter 5
(1.C. Lau. Convexity and optimization.
- Lecture 1
- Lecture 2
- Lecture 3
- Lectures 4-5

Exercises

(1) Is it true, that a set $K \subseteq \mathbb{R}^{n}$ is convex if and only if for any $x, y \in K$ we have $(x+y) / 2 \in K ?(1 \mathrm{pt})$
(2) Prove that for an arbitrary function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, the conjugate function $f^{*}(y)=\sup \left\{y^{\top} x-f(x) \mid x \in \operatorname{dom}(f)\right\}$ is convex. (1pt)
(3) Verify the following statements. (5pts)
(a) $e^{a x}$ is convex on \mathbb{R} for any $a \in \mathbb{R}$.
(b) x^{a} is convex on $\mathbb{R}_{>0}$ when $a \geqslant 1$ or $a \leqslant 0$, otherwise it is concave.
(c) $\log x$ is concave on $\mathbb{R}_{>0}$.
(d) $x \log x$ is convex on $\mathbb{R}_{>0}$.
(e) $\max \left\{x_{1}, \ldots, x_{n}\right\}$ is convex on \mathbb{R}^{n}.

Exercises

(4) Consider the optimization problem

$$
\begin{gathered}
\text { minimize } x^{2}+1 \\
\text { subject to }(x-2)(x-4) \leqslant 0
\end{gathered}
$$

with variable $x \in \mathbb{R}$.
(a) Analysis of primal problem. Give the feasible set, the optimal value, and the optimal solution. (1pt)
(b) Lagrangian and dual function. Plot the objective $x^{2}+1$ versus x On the same plot, show the feasible set, optimal point and value, and plot the Lagrangian $L(x, \lambda)$ versus x for a few positive values of λ. Verify the lower bound property, that is, $y^{*} \geqslant \inf _{x} L(x, \lambda)$ for $\lambda \geqslant 0$. Derive and sketch the Lagrange dual function g. (2pts)
C Lagrange dual problem. State the dual problem, and verify that it is a concave maximization problem. Find the dual optimal value and dual optimal solution λ^{*}. Does strong duality hold? (2pts)

