
Optimization

Fall semester 2022/23

Kristóf Bérczi

Eötvös Loránd University

Institute of Mathematics

Department of Operations Research



Lecture 3: Convexity



Convex sets

A set K ⊆ Rn is convex if for all x , y ∈ K and θ ∈ [0, 1], we have

θx + (1− θ)y ∈ K .

b

b

b

b

Examples:

• Polytopes: K = {x ∈ Rn : ⟨ai , x⟩ ⩽ bi for i = 1, . . . ,m}, where ai ∈ Rn

and bi ∈ R for i = 1, . . . ,m.

• Ellipsoids: K = {x ∈ Rn : xTAx ⩽ 1 where A ∈ Rn×n is a positive de�nite

matrix.

• Balls (in ℓp norms for p ⩾ 1): K = {x ∈ Rn : p

√∑n
i=1 |xi − ai |p ⩽ 1},

where a ∈ Rn is a vector.



Convex functions

A function f : Rn → R is convex if its domain is a convex set and for all

x , y ∈ K and θ ∈ [0, 1], we have

f (θx + (1− θ)y) ⩽ θf (x) + (1− θ)f (y).

If the inequality always holds as strict inequality, the function is strictly

convex.

The function f is concave or strictly concave if −f is convex or strictly

convex, respectively.

Remark: If f : K → Rn is a convex function, then setting f (x) = +∞ for

x /∈ K results in a convex function when the arithmetic operations on

R ∪ {+∞} are interpreted in the reasonable way.



Semide�nite matrices

A matrix M ∈ Rn×n is symmetric if MT = M.

The identity matrix of size n × n is denoted by In.

A symmetric matrix M is positive semide�nite (PSD) if xTMx ⩾ 0 holds for

all x ∈ Rn, and this is denoted by M ⪰ 0.

M is positive de�nite (PD) if xTMX > 0 holds for all non-zero x ∈ Rn, and

this is denoted by M ≻ 0.

We de�ne M ⪰ N ⇔ M − N ⪰ 0 and M ≻ N ⇔ M − N ≻ 0.



Calculus I

We are working with `su�ciently smooth' functions f : Rn → R.

The derivative of f (x1, . . . , xn) is called the gradient, and is de�ned as

∇f (x) =

[
∂f

∂x1
(x), . . . ,

∂f

∂xn
(x)

]

The directional derivative of f in the direction d is ⟨∇f (x), d⟩.

The second derivatives of f can be summerized in the Hessian matrix
∂2f
∂x2

1

∂2f
∂x1∂x2

. . . ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂x2

1

. . . ∂2f
∂x2∂xn

...
...

. . . . . .
∂2f

∂xn∂x1

∂2f
∂xn∂x2

. . . ∂2f
∂x2n


Remark: The Hessian is symmetric if f is su�ciently di�erentiable.



Calculus II

Taylor expansion

The Taylor series expansion of f around x = a is

f (x) = f (a) + ⟨∇f (a), x − a⟩︸ ︷︷ ︸
�rst order approximation

+
1

2
(x − a)T∇2f (a)(x − a)

︸ ︷︷ ︸
second order approximation

+ . . .

Consider a function in one dimension, i.e. f : R → R.

When f is convex, the tangent is `below'

the graph, i.e.

f (y) ⩾ f (x) + f ′(x)(y − x). b

b

b

yx

f(x)

f(y)

f(x) + f′(x)(y − x)



First order condition

First order condition

Let f be a di�erentiable function f : Rn → R over a convex set K . Then f is

convex if and only if for all x , y ∈ K

f (y) ⩾ f (x) + ⟨∇f (x), y − x⟩.

Proof of the one-dimensional case.

⇒ For any θ ∈ [0, 1], we have

(1− θ)f (x) + θf (y) ⩾ f (θy + (1− θ)x) = f (x + θ(y − x)).

Subtracting (1− θ)f (x) and dividing by θ yields

f (y) ⩾ f (x) +
f (x + θ(y − x))− f (x)

θ
.

Taking limit θ → 0 gives f (y) ⩾ f (x) + ⟨∇f (x), y − x⟩.



First order condition

First order condition

Let f be a di�erentiable function f : Rn → R over a convex set K . Then f is

convex if and only if for all x , y ∈ K

f (y) ⩾ f (x) + ⟨∇f (x), y − x⟩.

Proof of the one-dimensional case.

⇐ Let z = θx + (1− θ)y . The �rst order approximation underestimates both

f (x) and f (y), hence

f (x) ⩾ f (z) +∇(z)T (x − z),

f (y) ⩾ f (z) +∇(z)T (y − z).

Therefore

(1− θ)f (x) + θf (y) ⩾ f (z) +∇f (z)T (θx + (1− θ)y − z) = f (θ(y) + (1− θ)x).



Second order condition

In the one-dimensional case, f ′′(x) ⩾ 0 when

f is convex, that is, the slope of the tangent

is non-decreasing, as otherwise when the slope

decreases the function becomes non-convex.
b

b

b

b

b

b

Second order condition

Let f be twice di�erentiable such that dom f is open. Then f is convex if and

only if ∇2f (x) ⪰ 0 for all x ∈ dom f .



Local vs. global optimum I

Convex optimization problem:

infx∈K f (x)
usually→ minx∈K f (x)

b

b

b

b

Intuition: ∇f (x) = 0 when x is optimal.

Problem: ∇f (x) = 0 may correspond to a local optimum/maximum.

Global optimum

If the domain of a convex di�erentiable function f is Rn, then x is an optimal

solution to infx∈Rn f (x) if and only if ∇f (x) = 0.



Local vs. global optimum II

Proof of the `if' direction.
Assume that ∇f (x0) = 0. Since f is convex, we know that for all y ∈ Rn we

have

f (y) ⩾ f (x0) + ⟨∇f (x0), y − x0⟩
= f (x0) + ⟨0, y − x0⟩
= f (x0).

Remark: In the constrained setting, i.e. when K ̸= Rn, the following holds.

Global optimum

If f is a convex di�erentiable function, then x is an optimal solution to

infx∈Rn f (x) if and only if ⟨∇f (x), y − x⟩ ⩾ 0 for all y ∈ Rn.



Convex programs

A convex program can be written as follows.

Convex program

inf f0(x)

s.t. fi (x) ⩽ 0 for 1 ⩽ i ⩽ m

hj(x) = 0 for 1 ⩽ j ⩽ p

• fi is convex for i = 0, . . . ,m

• hj is convex for j = 1, . . . , p

Remark: The domain of the problem is D :=
(⋂m

i=0 dom fi
)
∩
(⋂p

j=1 dom hj
)
,

which is a convex set ⇒ Roughly speaking, this makes the problem tractable.

Question: Can we de�ne a dual program? How to give a lower bound?



Dual programs I

Idea: �move the constraints into the objective function�

The Lagrangian associated with the problem is

L(x , λ, µ) := f0(x) +
m∑
i=1

λi fi (x) +

p∑
j=1

µjhj(x),

where the λi s and µjs are called Lagrangian multipliers, and λ ∈ Rm and

µ ∈ Rp are called the dual variables.

The Lagrangian dual function is the min value of the Lagrangian over x ,

g(λ, µ) := inf
x
L(x , λ, µ).



Dual programs II

Let OPTP denote the optimum value of the primal problem, and let x̂ be an

arbitrary feasible solution. Furthermore, assume that λ ⩾ 0. Then

g(λ, µ) ⩽ f0(x̂) +
m∑
i=1

λi fi (x̂) +

p∑
j=1

µjhj(x̂)

⩽ f0(x̂),

hence g(λ, µ) ⩽ inf
x feasible

f0(x) = OPTP .

Conclusion:

• This gives a lower bound when λ ⩾ 0 and g(λ, µ) > −∞ ⇒ Such a pair

λ, µ is called dual feasible.



Weak duality

The goal is to get the best lower bound on OPTP using the Lagrangian dual.

The dual program is thus de�ned as

Dual program

max g(λ, µ)

s.t. λ ⩾ 0

Let OPTD denote the optimal value of the dual. Then weak duality holds by

construction, that is, OPTD ⩽ OPTP .

Remarks:

• The dual program is always convex, regardeless of the primal.

• That is, for any primal program (even though non-convex), we can always

write a convex program that gives a lower bound on the primal objective

value.



Strong duality

Question: Does OPTD = OPTP always holds?

Answer: Unfortunately NOT. But!

The Slater's condition requires that there is x ∈ rel int(D) such that fi (x) < 0

for 1 ⩽ i ⩽ m and hj(x) = 0 for 1 ⩽ j ⩽ p.

(That is, the exists an interior point in the domain, which is a feasible solution,

and satis�es the non-a�ne inequality constraints strictly.)

Strong duality

If Slater's condition holds, then OPTD = OPTP .



Complementary slackness

Assume that OPTD = OPTP . Let x
∗ be a primal, λ∗, µ∗ be dual optimal

solutions. Then

f0(x
∗) = g(λ∗, µ∗)

= inf
x
L(x , λ∗, µ∗)

⩽ L(x∗, λ∗, µ∗)

= f0(x
∗) +

m∑
i=1

λ∗
i fi (x

∗) +

p∑
j=1

µ∗
j hj(x

∗)

⩽ f0(x
∗),

as λ ⩾ 0 (dual feasible) and fi (x
∗) ⩽ 0, hj(x

∗) = 0 (primal feasible).

Therefore

• x∗ is a minimizer of L(x , λ∗, µ∗), and
• λ∗

i fi (x
∗) = 0 for 1 ⩽ i ⩽ m, called the complementary slackness

condition, meaning that the non-zero pattern of λ∗
i and fi (x

∗) must be

complementary.



Karush-Kuhn-Tucker (KKT) conditions I

Assume that f0, f1, . . . , fm, h1, . . . , hp are all di�erentiable.

Since x∗ minimize L(x , λ∗, µ∗) by the above, the gradient of L at x∗ must be

zero, that is,

∇f0(x
∗) +

m∑
i=1

λ∗
i ∇fi (x

∗) +

p∑
j=1

µ∗
j ∇hj(x

∗) = 0.

To sum up, the following are some necessary conditions for any pair of primal

and dual optimal solutions.

Primal feasibility: fi (x
∗) ⩽ 0 for 1 ⩽ 1 ⩽ m, hj(x

∗) = 0 for 1 ⩽ j ⩽ p.

Dual feasibility: λ∗
i ⩾ 0 for 1 ⩽ i ⩽ m.

Complementary slackness: λ∗
i fi (x

∗) = 0 for 1 ⩽ i ⩽ m.

Lagrangian optimality: ∇f0(x
∗) +

∑m
i=1 λ

∗
i ∇fi (x

∗) +
∑p

j=1 µ
∗
j ∇hj(x

∗) = 0.

This set of conditions is called the KKT conditions.



Karush-Kuhn-Tucker (KKT) conditions II

When the primal problem is convex, the KKT conditions are also su�cient!

⇒ Any x∗, λ∗, µ∗ satisfying KKT must be primal and dual optimal

solutions.

Reason: If the primal is convex, thenL(x , λ, µ) is convex in x when λ, µ are

�xed. Hence a local optimal solution is also a global optimal solution. More

precisely:

g(λ∗, µ∗) = inf
x
L(x , λ∗, µ∗)

= L(x∗, λ∗, µ∗)

= f0(x
∗) +

m∑
i=1

λ∗
i fi (x

∗) +

p∑
j=1

µ∗
j hj(x

∗)

= f0(x
∗).

Summary: For a convex problem with di�erentiable functions, if Slater's

condition is satis�ed, then the KKT conditions are necessary and su�cient for

optimality.



Reading assignment

N. Vishnoi. Algorithms for convex optimization.

• Chapter 1

• Chapter 2

• Chapter 3

• Chapter 4

• Chapter 5

L.C. Lau. Convexity and optimization.

• Lecture 1

• Lecture 2

• Lecture 3

• Lectures 4-5

https://convex-optimization.github.io/
https://cs.uwaterloo.ca/~lapchi/cs798/notes.html


Exercises

1 Is it true, that a set K ⊆ Rn is convex if and only if for any x , y ∈ K we have

(x + y)/2 ∈ K? (1pt)

2 Prove that for an arbitrary function f : Rn → R, the conjugate function

f ∗(y) = sup{yT x − f (x) | x ∈ dom(f )} is convex. (1pt)

3 Verify the following statements. (5pts)

a eax is convex on R for any a ∈ R.
b xa is convex on R>0 when a ⩾ 1 or a ⩽ 0, otherwise it is concave.

c log x is concave on R>0.

d x log x is convex on R>0.

e max{x1, . . . , xn} is convex on Rn.



Exercises

4 Consider the optimization problem

minimize x2 + 1

subject to (x − 2)(x − 4) ⩽ 0

with variable x ∈ R.

a Analysis of primal problem. Give the feasible set, the optimal value, and the

optimal solution. (1pt)

b Lagrangian and dual function. Plot the objective x2 + 1 versus x On the

same plot, show the feasible set, optimal point and value, and plot the

Lagrangian L(x , λ) versus x for a few positive values of λ. Verify the lower

bound property, that is, y∗ ⩾ infx L(x , λ) for λ ⩾ 0. Derive and sketch the

Lagrange dual function g . (2pts)

c Lagrange dual problem. State the dual problem, and verify that it is a

concave maximization problem. Find the dual optimal value and dual

optimal solution λ∗. Does strong duality hold? (2pts)
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