Optimization

Fall semester 2022/23

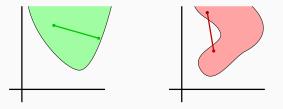
Kristóf Bérczi

Eötvös Loránd University Institute of Mathematics Department of Operations Research

Lecture 3: Convexity

Convex sets

A set $K \subseteq \mathbb{R}^n$ is **convex** if for all $x, y \in K$ and $\theta \in [0, 1]$, we have $\theta x + (1 - \theta)y \in K$.



Examples:

- **Polytopes:** $K = \{x \in \mathbb{R}^n : \langle a_i, x \rangle \leq b_i \text{ for } i = 1, ..., m\}$, where $a_i \in \mathbb{R}^n$ and $b_i \in \mathbb{R}$ for i = 1, ..., m.
- Ellipsoids: K = {x ∈ ℝⁿ : x^TAx ≤ 1 where A ∈ ℝ^{n×n} is a positive definite matrix.
- Balls (in ℓ_p norms for $p \ge 1$): $K = \{x \in \mathbb{R}^n : \sqrt[p]{\sum_{i=1}^n |x_i a_i|^p \le 1}\}$, where $a \in \mathbb{R}^n$ is a vector.

A function $f : \mathbb{R}^n \to \mathbb{R}$ is **convex** if its domain is a convex set and for all $x, y \in K$ and $\theta \in [0, 1]$, we have

$$f(\theta x + (1 - \theta)y) \leq \theta f(x) + (1 - \theta)f(y).$$

If the inequality always holds as strict inequality, the function is **strictly convex.**

The function f is **concave** or **strictly concave** if -f is convex or strictly convex, respectively.

Remark: If $f : K \to \mathbb{R}^n$ is a convex function, then setting $f(x) = +\infty$ for $x \notin K$ results in a convex function when the arithmetic operations on $\mathbb{R} \cup \{+\infty\}$ are interpreted in the reasonable way.

A matrix $M \in \mathbb{R}^{n \times n}$ is symmetric if $M^T = M$.

The **identity matrix** of size $n \times n$ is denoted by I_n .

A symmetric matrix M is **positive semidefinite (PSD)** if $x^T M x \ge 0$ holds for all $x \in \mathbb{R}^n$, and this is denoted by $M \succeq 0$.

M is **positive definite (PD)** if $x^T M X > 0$ holds for all non-zero $x \in \mathbb{R}^n$, and this is denoted by $M \succ 0$.

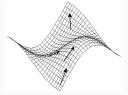
We define $M \succeq N \Leftrightarrow M - N \succeq 0$ and $M \succ N \Leftrightarrow M - N \succ 0$.

Calculus I

We are working with 'sufficiently smooth' functions $f: \mathbb{R}^n \to \mathbb{R}$.

The derivative of $f(x_1, \ldots, x_n)$ is called the **gradient**, and is defined as

$$abla f(x) = \left[\frac{\partial f}{\partial x_1}(x), \dots, \frac{\partial f}{\partial x_n}(x)\right]$$



The **directional derivative** of *f* in the direction *d* is $\langle \nabla f(x), d \rangle$.

The second derivatives of f can be summerized in the **Hessian** matrix

$$\begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_1^2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \ddots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_2^2} \end{bmatrix}$$

Remark: The Hessian is symmetric if *f* is sufficiently differentiable.

Calculus II

Taylor expansion

The Taylor series expansion of f around x = a is

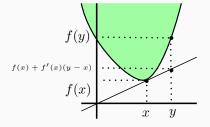
$$f(x) = \underbrace{f(a) + \langle \nabla f(a), x - a \rangle}_{\text{first order approximation}} + \frac{1}{2}(x - a)^T \nabla^2 f(a)(x - a) + \dots$$

second order approximation

Consider a function in one dimension, i.e. $f : \mathbb{R} \to \mathbb{R}$.

When *f* is convex, the tangent is 'below' the graph, i.e.

$$f(y) \ge f(x) + f'(x)(y - x).$$



First order condition

Let f be a differentiable function $f : \mathbb{R}^n \to \mathbb{R}$ over a convex set K. Then f is convex if and only if for all $x, y \in K$

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle.$$

Proof of the one-dimensional case.

 $\Rightarrow \text{ For any } \theta \in [0,1], \text{ we have} \\ (1-\theta)f(x) + \theta f(y) \ge f(\theta y + (1-\theta)x) = f(x+\theta(y-x)). \\ \text{Subtracting } (1-\theta)f(x) \text{ and dividing by } \theta \text{ yields} \\ f(y) \ge f(x) + \frac{f(x+\theta(y-x)) - f(x)}{\theta}. \\ \text{Taking limit } \theta \to 0 \text{ gives } f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle. \\ \end{cases}$

First order condition

Let f be a differentiable function $f : \mathbb{R}^n \to \mathbb{R}$ over a convex set K. Then f is convex if and only if for all $x, y \in K$

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle.$$

Proof of the one-dimensional case.

 \leftarrow Let $z = \theta x + (1 - \theta)y$. The first order approximation underestimates both f(x) and f(y), hence

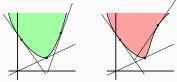
$$f(x) \ge f(z) + \nabla(z)^T (x - z),$$

$$f(y) \ge f(z) + \nabla(z)^T (y - z).$$

Therefore

$$(1-\theta)f(x)+\theta f(y) \ge f(z)+\nabla f(z)^T(\theta x+(1-\theta)y-z)=f(\theta(y)+(1-\theta)x).$$

In the one-dimensional case, $f''(x) \ge 0$ when f is convex, that is, the slope of the tangent is non-decreasing, as otherwise when the slope decreases the function becomes non-convex.



Second order condition

Let f be twice differentiable such that dom f is open. Then f is convex if and only if $\nabla^2 f(x) \succeq 0$ for all $x \in \text{dom } f$.

Local vs. global optimum I

Convex optimization problem:

$$\inf_{x \in K} f(x) \xrightarrow{\text{usually}} \min_{x \in K} f(x)$$

Intuition: $\nabla f(x) = 0$ when x is optimal.

Problem: $\nabla f(x) = 0$ may correspond to a local optimum/maximum.

Global optimum

If the domain of a convex differentiable function f is \mathbb{R}^n , then x is an optimal solution to $\inf_{x \in \mathbb{R}^n} f(x)$ if and only if $\nabla f(x) = 0$.

Proof of the 'if' direction.

Assume that $\nabla f(x_0) = 0$. Since f is convex, we know that for all $y \in \mathbb{R}^n$ we have

$$\begin{split} f(y) &\ge f(x_0) + \langle \nabla f(x_0), y - x_0 \rangle \\ &= f(x_0) + \langle 0, y - x_0 \rangle \\ &= f(x_0). \end{split}$$

Remark: In the constrained setting, i.e. when $K \neq \mathbb{R}^n$, the following holds.

Global optimum

If f is a convex differentiable function, then x is an optimal solution to $\inf_{x \in \mathbb{R}^n} f(x)$ if and only if $\langle \nabla f(x), y - x \rangle \ge 0$ for all $y \in \mathbb{R}^n$.

A convex program can be written as follows.

Convex program inf $f_0(x)$ s.t. $f_i(x) \leq 0$ for $1 \leq i \leq m$ $h_j(x) = 0$ for $1 \leq j \leq p$

- f_i is convex for $i = 0, \ldots, m$
- h_j is convex for $j = 1, \ldots, p$

Remark: The domain of the problem is $D := \left(\bigcap_{i=0}^{m} \operatorname{dom} f_{i}\right) \cap \left(\bigcap_{j=1}^{p} \operatorname{dom} h_{j}\right)$, which is a convex set \Rightarrow Roughly speaking, this makes the problem tractable.

Question: Can we define a dual program? How to give a lower bound?

Idea: "move the constraints into the objective function"

The Lagrangian associated with the problem is

$$L(x,\lambda,\mu):=f_0(x)+\sum_{i=1}^m\lambda_if_i(x)+\sum_{j=1}^p\mu_jh_j(x),$$

where the λ_i s and μ_j s are called **Lagrangian multipliers**, and $\lambda \in \mathbb{R}^m$ and $\mu \in \mathbb{R}^p$ are called the **dual variables**.

The Lagrangian dual function is the min value of the Lagrangian over x,

$$g(\lambda,\mu) := \inf_{x} L(x,\lambda,\mu).$$

Let OPT_P denote the optimum value of the primal problem, and let \hat{x} be an arbitrary feasible solution. Furthermore, assume that $\lambda \ge 0$. Then

$$g(\lambda,\mu) \leqslant f_0(\hat{x}) + \sum_{i=1}^m \lambda_i f_i(\hat{x}) + \sum_{j=1}^p \mu_j h_j(\hat{x})$$
$$\leqslant f_0(\hat{x}),$$
hence $g(\lambda,\mu) \leqslant \inf_{x \text{ feasible}} f_0(x) = OPT_P.$

Conclusion:

• This gives a lower bound when $\lambda \ge 0$ and $g(\lambda, \mu) > -\infty \Rightarrow$ Such a pair λ, μ is called **dual feasible**.

Weak duality

The goal is to get the best lower bound on OPT_P using the Lagrangian dual.

The dual program is thus defined as

Dual program	
max $g(\lambda,\mu)$	
s.t. $\lambda \geqslant 0$	

Let OPT_D denote the optimal value of the dual. Then **weak duality** holds by construction, that is, $OPT_D \leq OPT_P$.

Remarks:

- The dual program is always convex, regardeless of the primal.
- That is, for any primal program (even though non-convex), we can always write a convex program that gives a lower bound on the primal objective value.

Question: Does $OPT_D = OPT_P$ always holds?

Answer: Unfortunately NOT. But!

The **Slater's condition** requires that there is $x \in \text{relint}(D)$ such that $f_i(x) < 0$ for $1 \leq i \leq m$ and $h_j(x) = 0$ for $1 \leq j \leq p$.

(That is, the exists an **interior** point in the domain, which is a feasible solution, and satisfies the non-affine inequality constraints **strictly**.)

Strong duality

If Slater's condition holds, then $OPT_D = OPT_P$.

Complementary slackness

Assume that $OPT_D = OPT_P$. Let x^* be a primal, λ^*, μ^* be dual optimal solutions. Then

$$\begin{split} f_0(x^*) &= g(\lambda^*, \mu^*) \\ &= \inf_x L(x, \lambda^*, \mu^*) \\ &\leqslant L(x^*, \lambda^*, \mu^*) \\ &= f_0(x^*) + \sum_{i=1}^m \lambda_i^* f_i(x^*) + \sum_{j=1}^p \mu_j^* h_j(x^*) \\ &\leqslant f_0(x^*), \end{split}$$

as $\lambda \geqslant 0$ (dual feasible) and $f_i(x^*) \leqslant 0$, $h_j(x^*) = 0$ (primal feasible).

Therefore

- x^* is a minimizer of $L(x, \lambda^*, \mu^*)$, and
- $\lambda_i^* f_i(x^*) = 0$ for $1 \le i \le m$, called the **complementary slackness condition**, meaning that the non-zero pattern of λ_i^* and $f_i(x^*)$ must be complementary.

Assume that $f_0, f_1, \ldots, f_m, h_1, \ldots, h_p$ are all differentiable.

Since x^* minimize $L(x, \lambda^*, \mu^*)$ by the above, the gradient of L at x^* must be zero, that is,

$$abla f_0(x^*) + \sum_{i=1}^m \lambda_i^* \nabla f_i(x^*) + \sum_{j=1}^p \mu_j^* \nabla h_j(x^*) = 0.$$

To sum up, the following are some necessary conditions for any pair of primal and dual optimal solutions.

Primal feasibility: $f_i(x^*) \leq 0$ for $1 \leq 1 \leq m$, $h_j(x^*) = 0$ for $1 \leq j \leq p$. **Dual feasibility:** $\lambda_i^* \geq 0$ for $1 \leq i \leq m$.

Complementary slackness: $\lambda_i^* f_i(x^*) = 0$ for $1 \leq i \leq m$.

Lagrangian optimality: $\nabla f_0(x^*) + \sum_{i=1}^m \lambda_i^* \nabla f_i(x^*) + \sum_{j=1}^p \mu_j^* \nabla h_j(x^*) = 0.$

This set of conditions is called the **KKT conditions**.

g

When the primal problem is convex, the KKT conditions are also sufficient!

 \Rightarrow Any x^*,λ^*,μ^* satisfying KKT must be primal and dual optimal solutions.

Reason: If the primal is convex, then $L(x, \lambda, \mu)$ is convex in x when λ, μ are fixed. Hence a local optimal solution is also a global optimal solution. More precisely:

$$\begin{aligned} (\lambda^*, \mu^*) &= \inf_{x} L(x, \lambda^*, \mu^*) \\ &= L(x^*, \lambda^*, \mu^*) \\ &= f_0(x^*) + \sum_{i=1}^m \lambda_i^* f_i(x^*) + \sum_{j=1}^p \mu_j^* h_j(x^*) \\ &= f_0(x^*). \end{aligned}$$

Summary: For a convex problem with differentiable functions, if Slater's condition is satisfied, then the KKT conditions are **necessary** and **sufficient** for optimality.

Reading assignment

N. Vishnoi. Algorithms for convex optimization.

• Chapter 1

- Chapter 2
- Chapter 3
- Chapter 4
- Chapter 5

🔋 L.C. Lau. Convexity and optimization.

- Lecture 1
- Lecture 2
- Lecture 3
- Lectures 4-5

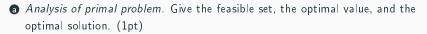
- **1** Is it true, that a set $K \subseteq \mathbb{R}^n$ is convex if and only if for any $x, y \in K$ we have $(x + y)/2 \in K$? (1pt)
- **2** Prove that for an arbitrary function $f : \mathbb{R}^n \to \mathbb{R}$, the conjugate function $f^*(y) = \sup\{y^T x f(x) \mid x \in \operatorname{dom}(f)\}$ is convex. (1pt)
- **3** Verify the following statements. (5pts)
 - a) e^{ax} is convex on \mathbb{R} for any $a \in \mathbb{R}$.
 - **b** x^a is convex on $\mathbb{R}_{>0}$ when $a \ge 1$ or $a \le 0$, otherwise it is concave.
 - \bigcirc log x is concave on $\mathbb{R}_{>0}$.
 - **d** $x \log x$ is convex on $\mathbb{R}_{>0}$.
 - max $\{x_1, \ldots, x_n\}$ is convex on \mathbb{R}^n .

Exercises

4 Consider the optimization problem

 $\label{eq:subject} \begin{array}{ll} \mbox{minimize} & x^2+1 \\ \mbox{subject to} & (x-2)(x-4) \leqslant 0 \end{array}$

with variable $x \in \mathbb{R}$.



- **()** Lagrangian and dual function. Plot the objective $x^2 + 1$ versus x On the same plot, show the feasible set, optimal point and value, and plot the Lagrangian $L(x, \lambda)$ versus x for a few positive values of λ . Verify the lower bound property, that is, $y^* \ge \inf_x L(x, \lambda)$ for $\lambda \ge 0$. Derive and sketch the Lagrange dual function g. (2pts)
- Lagrange dual problem. State the dual problem, and verify that it is a concave maximization problem. Find the dual optimal value and dual optimal solution λ*. Does strong duality hold? (2pts)