
Optimization

Fall semester 2022/23

Kristóf Bérczi

Eötvös Loránd University

Institute of Mathematics

Department of Operations Research



Lecture 2: Integer programming



Example revisited

Example:

x1 + 2 · x2 ⩽ 8

2 · x1 + x2 ⩽ 6

x1, x2 ⩾ 0

bb b

b b b

b b b

b b b b

b

bb

b

b

b b b b

b b b

b

b b b b b b

b

b

b

b

b

b

x1

x2



Example revisited

Example:

x1 + 2 · x2 ⩽ 8

2 · x1 + x2 ⩽ 6

x1, x2 ⩾ 0

x1, x2 ∈ Z
bb b

b b b

b b b

b b b b

b

bb

b

b

b b b b

b b b

b

b b b b b b

b

b

b

b

b

b

x1

x2



Example revisited

Example:

x1 + 2 · x2 ⩽ 8

2 · x1 + x2 ⩽ 6

x1, x2 ⩾ 0

x1, x2 ∈ Z
bb b

b b b

b b b

b b b b

b

bb

b

b

b b b b

b b b

b

b b b b b b

b

b

b

b

b

x1

x2
x1 + x2 = 7



Example revisited

Example:

x1 + 2 · x2 ⩽ 8

2 · x1 + x2 ⩽ 6

x1, x2 ⩾ 0

x1, x2 ∈ Z
bb b

b b b

b b b

b b b b

b

bb

b

b

b b b b

b b b

b

b b b b b b

b

b

b

b

b

x1

x2
x1 + x2 = 6



Another example

Example:

x1 + 10 · x2 ⩽ 10

x1 − 10 · x2 ⩽ 0

x1, x2 ⩾ 0

max{x1}
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

bb bb bb bb bb bbb

x1

x2

The fractional optimum can be far from the integer one.



Another example

Example:

x1 + 10 · x2 ⩽ 10

x1 − 10 · x2 ⩽ 0

x1, x2 ⩾ 0

max{x1}
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

bb bb bb bb bb bbb

x1

x2

b

The fractional optimum can be far from the integer one.



Another example

Example:

x1 + 10 · x2 ⩽ 10

x1 − 10 · x2 ⩽ 0

x1, x2 ⩾ 0

max{x1}
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

bb bb bb bb bb bbb

x1

x2

b
b

b

The fractional optimum can be far from the integer one.



Another example

Example:

x1 + 10 · x2 ⩽ 10

x1 − 10 · x2 ⩽ 0

x1, x2 ⩾ 0

max{x1}
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

bb bb bb bb bb bbb

x1

x2

b
b

b

The fractional optimum can be far from the integer one.



Approaches

Bad news: integer programming is NP-complete

Good news: there exist e�cient algorithms

• totally unimodular matrices

- every square submatrix has determinant 0, +1 or -1

• cutting plane methods

- adding further inequalities that separate the actual optimum from the

convex hull of the true feasible set

• branch and bound methods

- systematically enumerating the candidate solutions, forming a rooted tree

• rounding methods (threshold rounding, iterative rounding)

- rounding the coordinates of an optimal fractional solution

• heuristic methods (tabu search, hill climbing, simulated annealing, ant

colony optimization, etc)

- some would call these `voodoo'...



Approaches

Bad news: integer programming is NP-complete

Good news: there exist e�cient algorithms

• totally unimodular matrices

- every square submatrix has determinant 0, +1 or -1

• cutting plane methods

- adding further inequalities that separate the actual optimum from the

convex hull of the true feasible set

• branch and bound methods

- systematically enumerating the candidate solutions, forming a rooted tree

• rounding methods (threshold rounding, iterative rounding)

- rounding the coordinates of an optimal fractional solution

• heuristic methods (tabu search, hill climbing, simulated annealing, ant

colony optimization, etc)

- some would call these `voodoo'...



Branch and bound I

min c(x)

s.t. x ∈ F

Here F is the set of integer feasible solutions to the problem.

Ideas:

• Partition F into subsets F1, . . . ,Fk , and solve the subproblems min c(x)

s.t. x ∈ Fi . [May be as di�cult as the original one, hence split into further

subproblems - branching part.]

• Compute lower bounds b(Fi ) for the subproblems. [A lower bound might

be easy to obtain, e.g. LP relaxation - bounding part.]

• Mainatin an upper bound U on the optimal cost. [E.g. the cost of the best

feasible solution thus far.]

Key observation: If b(Fi ) ⩾ U, then the subproblem need not be considered

further.



Branch and bound II

Algorithm (general step):

1 Select an active subproblem Fi .

2 If the subproblem is infeasibe, delete it;

otherwise compute b(Fi ).

• If b(Fi ) ⩾ U, delete the subproblem.

• If b(Fi ) < U, either determine an

optimal solution for Fi , or break it into

further (active) subproblems.

F

F1 F2

F4F3

Remarks:

• Choosing the subproblem, e.g. BFS or DFS.

• Computing the lower bounds, e.g. LP relaxation.

• Breaking into subproblems.



Rounding methods

Given a minimization problem, an α-approximation algorithm provides a

solution of value at most α · OPT .

Integer program

min cT · x
A · x ⩽ b

x ∈ Zn

Naiv approach:

1. remove the integrality constraint,

2. solve the corresponding LP, and

3. round the entries of the solution to get

an integer solution.

Problems:

• the solution may not be feasible Maintain feasibility.

• the solution may not be optimal Approximation?



Analysing the solution

Optimization
Problem

(IP)

Fractional
Relaxation

(LP)
x∗ x̂

(integer)
relax solve round

P ∗ (fractional optimal x∗)

Pint (integer optimal xint)

P (integer x̂)

(a) = Approximation ratio between x̂ and xint .

(b) = Approximation ration between x̂ and x∗.



Analysing the solution

Optimization
Problem

(IP)

Fractional
Relaxation

(LP)
x∗ x̂

(integer)
relax solve round

P ∗ (fractional optimal x∗)

Pint (integer optimal xint)

P (integer x̂)

(a) = Approximation ratio between x̂ and xint .

(b) = Approximation ration between x̂ and x∗.



Analysing the solution

Optimization
Problem

(IP)

Fractional
Relaxation

(LP)
x∗ x̂

(integer)
relax solve round

P ∗ (fractional optimal x∗)

Pint (integer optimal xint)

P (integer x̂)

(a)

(a) = Approximation ratio between x̂ and xint .

(b) = Approximation ration between x̂ and x∗.



Analysing the solution

Optimization
Problem

(IP)

Fractional
Relaxation

(LP)
x∗ x̂

(integer)
relax solve round

P ∗ (fractional optimal x∗)

Pint (integer optimal xint)

P (integer x̂)

(a)

(b)

(a) = Approximation ratio between x̂ and xint .

(b) = Approximation ration between x̂ and x∗.



Vertex cover I

Problem

Find a minimum number of vertices covering every edge of a graph.

Simple algorithm:

Step 1. Take an inclusionwise max-

imal matching M.

Step 2. Consider the end vertices of

the matching edges.

Observation

This gives a 2-approximation.

• One of Karp's 21 NP-complete

problems.

• Moreover, it is APX-complete.

- No better than

1.3606-approx. unless P =

NP.

- No better than 2-approx.

assuming UGC.



Vertex cover I

Problem

Find a minimum number of vertices covering every edge of a graph.

Simple algorithm:

Step 1. Take an inclusionwise max-

imal matching M.

Step 2. Consider the end vertices of

the matching edges.

Observation

This gives a 2-approximation.

• One of Karp's 21 NP-complete

problems.

• Moreover, it is APX-complete.

- No better than

1.3606-approx. unless P =

NP.

- No better than 2-approx.

assuming UGC.



Vertex cover I

Problem

Find a minimum number of vertices covering every edge of a graph.

Simple algorithm:

Step 1. Take an inclusionwise max-

imal matching M.

Step 2. Consider the end vertices of

the matching edges.

Observation

This gives a 2-approximation.

• One of Karp's 21 NP-complete

problems.

• Moreover, it is APX-complete.

- No better than

1.3606-approx. unless P =

NP.

- No better than 2-approx.

assuming UGC.



Vertex cover II

IP formulation

min
∑
v∈V

xv

xu + xv ⩾ 1 for uv ∈ E

xv ∈ {0, 1} for v ∈ V

LP relaxation

min
∑
v∈V

xv

xu + xv ⩾ 1 for uv ∈ E

xv ⩾ 0 for v ∈ V

Step 1.

Take a fractional solution x∗.

Step 2.

De�ne

x̂v =

{
1 if x∗v ⩾ 1/2,

0 otherwise.

Proof.
Note that x̂ is integral, feasible, and x̂v ⩽ 2 · x∗v . Hence∑

v∈V

x̂v ⩽ 2 ·
∑
v∈V

x∗v ⩽ 2 · OPT .



Vertex cover II

IP formulation

min
∑
v∈V

xv

xu + xv ⩾ 1 for uv ∈ E

xv ∈ {0, 1} for v ∈ V

LP relaxation

min
∑
v∈V

xv

xu + xv ⩾ 1 for uv ∈ E

xv ⩾ 0 for v ∈ V

Step 1.

Take a fractional solution x∗.

Step 2.

De�ne

x̂v =

{
1 if x∗v ⩾ 1/2,

0 otherwise.

Proof.
Note that x̂ is integral, feasible, and x̂v ⩽ 2 · x∗v . Hence∑

v∈V

x̂v ⩽ 2 ·
∑
v∈V

x∗v ⩽ 2 · OPT .



Vertex cover II

IP formulation

min
∑
v∈V

xv

xu + xv ⩾ 1 for uv ∈ E

xv ∈ {0, 1} for v ∈ V

LP relaxation

min
∑
v∈V

xv

xu + xv ⩾ 1 for uv ∈ E

xv ⩾ 0 for v ∈ V

Step 1.

Take a fractional solution x∗.

Step 2.

De�ne

x̂v =

{
1 if x∗v ⩾ 1/2,

0 otherwise.

010.4

0.3

0.6

0.7

Proof.
Note that x̂ is integral, feasible, and x̂v ⩽ 2 · x∗v . Hence∑

v∈V

x̂v ⩽ 2 ·
∑
v∈V

x∗v ⩽ 2 · OPT .



Vertex cover II

IP formulation

min
∑
v∈V

xv

xu + xv ⩾ 1 for uv ∈ E

xv ∈ {0, 1} for v ∈ V

LP relaxation

min
∑
v∈V

xv

xu + xv ⩾ 1 for uv ∈ E

xv ⩾ 0 for v ∈ V

Step 1.

Take a fractional solution x∗.

Step 2.

De�ne

x̂v =

{
1 if x∗v ⩾ 1/2,

0 otherwise.

010.4

0.3

0.6

0.7

Proof.
Note that x̂ is integral, feasible, and x̂v ⩽ 2 · x∗v . Hence∑

v∈V

x̂v ⩽ 2 ·
∑
v∈V

x∗v ⩽ 2 · OPT .



Vertex cover II

IP formulation

min
∑
v∈V

xv

xu + xv ⩾ 1 for uv ∈ E

xv ∈ {0, 1} for v ∈ V

LP relaxation

min
∑
v∈V

xv

xu + xv ⩾ 1 for uv ∈ E

xv ⩾ 0 for v ∈ V

Step 1.

Take a fractional solution x∗.

Step 2.

De�ne

x̂v =

{
1 if x∗v ⩾ 1/2,

0 otherwise.

010.4

0.3

1

1

Proof.
Note that x̂ is integral, feasible, and x̂v ⩽ 2 · x∗v . Hence∑

v∈V

x̂v ⩽ 2 ·
∑
v∈V

x∗v ⩽ 2 · OPT .



Vertex cover II

IP formulation

min
∑
v∈V

xv

xu + xv ⩾ 1 for uv ∈ E

xv ∈ {0, 1} for v ∈ V

LP relaxation

min
∑
v∈V

xv

xu + xv ⩾ 1 for uv ∈ E

xv ⩾ 0 for v ∈ V

Step 1.

Take a fractional solution x∗.

Step 2.

De�ne

x̂v =

{
1 if x∗v ⩾ 1/2,

0 otherwise.

010

0

1

1

Proof.
Note that x̂ is integral, feasible, and x̂v ⩽ 2 · x∗v . Hence∑

v∈V

x̂v ⩽ 2 ·
∑
v∈V

x∗v ⩽ 2 · OPT .



Vertex cover II

IP formulation

min
∑
v∈V

xv

xu + xv ⩾ 1 for uv ∈ E

xv ∈ {0, 1} for v ∈ V

LP relaxation

min
∑
v∈V

xv

xu + xv ⩾ 1 for uv ∈ E

xv ⩾ 0 for v ∈ V

Step 1.

Take a fractional solution x∗.

Step 2.

De�ne

x̂v =

{
1 if x∗v ⩾ 1/2,

0 otherwise.

010

0

1

1

Proof.
Note that x̂ is integral, feasible, and x̂v ⩽ 2 · x∗v . Hence∑

v∈V

x̂v ⩽ 2 ·
∑
v∈V

x∗v ⩽ 2 · OPT .



Vertex cover II

IP formulation

min
∑
v∈V

xv

xu + xv ⩾ 1 for uv ∈ E

xv ∈ {0, 1} for v ∈ V

LP relaxation

min
∑
v∈V

xv

xu + xv ⩾ 1 for uv ∈ E

xv ⩾ 0 for v ∈ V

Step 1.

Take a fractional solution x∗.

Step 2.

De�ne

x̂v =

{
1 if x∗v ⩾ 1/2,

0 otherwise.

010

0

1

1

Proof.
Note that x̂ is integral, feasible, and x̂v ⩽ 2 · x∗v . Hence∑

v∈V

x̂v ⩽ 2 ·
∑
v∈V

x∗v ⩽ 2 · OPT .



Vertex cover II

IP formulation

min
∑
v∈V

xv

xu + xv ⩾ 1 for uv ∈ E

xv ∈ {0, 1} for v ∈ V

LP relaxation

min
∑
v∈V

xv

xu + xv ⩾ 1 for uv ∈ E

xv ⩾ 0 for v ∈ V

Step 1.

Take a fractional solution x∗.

Step 2.

De�ne

x̂v =

{
1 if x∗v ⩾ 1/2,

0 otherwise.

010

0

1

1

Proof.
Note that x̂ is integral, feasible, and x̂v ⩽ 2 · x∗v . Hence∑

v∈V

x̂v ⩽ 2 ·
∑
v∈V

x∗v ⩽ 2 · OPT .



Threshold vs. iterative rounding

Threshold rounding

Optimization
Problem

(IP)

Fractional
Relaxation

(LP)
x∗ x̂

(integer)
relax solve round

Iterative rounding

Optimization
Problem

(IP)

Fractional
Relaxation

(LP)
x∗relax solve good part

bad part

x̂
(integer)

round

Residual problem



Integrality gap

P ∗ (fractional optimal x∗)

Pint (integer optimal xint)

P (integer x̂)

(a)

(b)

(a) = Approximation ratio between x̂ and xint .

(b) = Approximation ration between x̂ and x∗.

(c) = Integrality gap.



Integrality gap

P ∗ (fractional optimal x∗)

Pint (integer optimal xint)

P (integer x̂)

(a)

(b)
(c)

(a) = Approximation ratio between x̂ and xint .

(b) = Approximation ration between x̂ and x∗.

(c) = Integrality gap.



Heuristics - Local search

min c(x)

s.t. x ∈ F

Algorithm:

1 Start at some x ∈ F .

2 Evaluate c(x), and evaluate c(y) for �neighbors� y ∈ F of x .
• If c(y) < c(x), the move to y and repeat.

• Otherwise stop: local optimum has been found.

Remarks:

• Speci�cs are determined once �neighbors� are de�ned.

• Simplex method can be viewed as a special case.

• In practice: run repeatedly starting from di�erent initial solutions.

• Tradeo�: better solution is likely to obtained when considering larger

neighborhood, but this results in slower running time.



Heuristics - Simulated annealing I

Main drawback of local search: Only �nds local minimum.

Idea: Allow occasional moves to feasible solutions with higher costs.

Algorithm: For every state x ∈ F , a set N(x) ⊆ F of neighbors is given

(y ∈ N(x) ⇔ x ∈ N(y)).

1 Start from state x ∈ F .

2 Select a random neighbor y of x with probability qxy .

[Here qxy ⩾ 0 and
∑

y∈N(x) qxy = 1.]

3 Compute the di�erence c(y)− c(x).

• If c(y) ⩽ c(x), then move to state y .
• If c(y) > c(x), then move to state y with probability e−(c(y)−c(x))/T .

Remarks:

• When the temperature T is small - cost increases are unlikely.

• When T is large - the value of c(y)− c(x) has insigni�cant e�ect.



Heuristics - Simulated annealing II

The procedure evolves as a Markov chain. Let A =
∑

z∈F e−c(z)/T .

Steady-state distribution:

π(x) =
e−c(x)/T

A
,

⇒ π(x) falls exponentially with c(x). Hence if T is small, then almost all of

the steady-state probability is concentrated on states minimizing c(x) globally.

Should we set T to some very small constant then?

Drawback: the lower the value of T , the harder it is to escape from a local

minimum and the longer it takes to reach steady-state.

Instead: Let the temperature vary with time:

T (t) =
C

log t
.

Thm.

If C is su�ciently large, then limt→∞ P(x(t) is optimal) = 1.



Reading assignment

D. Bertsimas, J.N. Tsitsiklis. Introduction to linear optimization.

• Chapter 11, Sections 11.2, 11.6, and 11.7



Exercises

Submission deadline: The starting time of the next lecture.

1 Consider the following integer programming problem.

maximize x1 + 2x2

subject to −3x1 + 4x2 ⩽ 4

3x1 + 2x2 ⩽ 11

2x1 − x2 ⩽ 5

x1, x2 ⩾ 0

x1, x2 integer

Use a �gure to answer the following questions.

a What is the optimal cost of the linear programming relaxation? What is the

optimal cost of the integer programming problem? (1pt)

b What is the convex hull of the set of all solutions to the integer

programming problem? (1pt)



Exercises

2 A company is manufacturing k di�erent products using m resources. The amounts of

available resources are given, together with the requirement of each of them for the

di�erent products. The selling price of the products are also known.

a Write up an IP model that aims at maximizing the total pro�t. (1pt)

b Adjust the model if starting the production of product i requires a cost of

si . (1pt)

3 Consider the integer programming problem

minimize xn+1

subject to 2x1 + 2x2 + · · ·+ 2xn + xn+1 = n

xi ∈ {0, 1}

Show that any branch and bound algorithm that uses LP relaxations to compute lower

bounds, and branches by setting a fractional variable to either zero or one, will require

the enumeration of an exponential number of subproblems when n is odd. (2pts)



Exercises

4 The pagination problem faced by a document processing program like LATEX can be

abstracted as follows. The text consists of a sequence 1, . . . , n of n items (words,

formulas, etc.). A page that starts with item i and ends with item j is assigned an

attractiveness factor cij . Assuming that the factors cij are available, we wish to

maximize the total attractiveness of the paginated text. Develop an algorithm for this

problem. (Hint: try to use recursive approach.) (2pts)


