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Lecture 2: Integer programming



Example revisited

Example:
X1 +2-x <8
2:-x1+x <6
0

X1, X2 2




Example revisited

Example:




Example revisited

Example:




Example revisited

Example:




Another example

Example: T2
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Another example

Example: Z2

T

The fractional optimum can be far from the integer one.
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Bad news: integer programming is NP-complete



Approaches

Bad news: integer programming is NP-complete

Good news: there exist efficient algorithms

totally unimodular matrices
- every square submatrix has determinant 0, +1 or -1

cutting plane methods
- adding further inequalities that separate the actual optimum from the
convex hull of the true feasible set

branch and bound methods
- systematically enumerating the candidate solutions, forming a rooted tree

rounding methods (threshold rounding, iterative rounding)
- rounding the coordinates of an optimal fractional solution

heuristic methods (tabu search, hill climbing, simulated annealing, ant
colony optimization, etc)
- some would call these ‘voodoo’...



Branch and bound |

min c(x)
st. xeF

Here F is the set of integer feasible solutions to the problem.
Ideas:

® Partition F into subsets Fq, ..., Fk, and solve the subproblems min c(x)
s.t. x € F;. [May be as difficult as the original one, hence split into further
subproblems - branching part |

® Compute lower bounds b(F;) for the subproblems. [A lower bound might
be easy to obtain, e.g. LP relaxation - bounding part.]

® Mainatin an upper bound U on the optimal cost. [E.g. the cost of the best
feasible solution thus far.]

Key observation: If b(F;) > U, then the subproblem need not be considered
further.



Branch and bound Il

Algorithm (general step):
@ Select an active subproblem F;.
@ If the subproblem is infeasibe, delete it;

otherwise compute b(F;). N
® If b(Fi) > U, delete the subproblem. @ @
® If b(F;) < U, either determine an P \

optimal solution for F;, or break it into @

further (active) subproblems.

Remarks:
® Choosing the subproblem, e.g. BFS or DFS.
® Computing the lower bounds, e.g. LP relaxation.

® Breaking into subproblems.



Rounding methods

Given a minimization problem, an a-approximation algorithm provides a
solution of value at most o - OPT .

Integer program Naiv approach:
1. remove the integrality constraint,

. T .

b & = 3% 2. solve the corresponding LP, and

A-x<b 3. round the entries of the solution to get
x € 7Zn an integer solution.

Problems:
® the solution may not be feasible Maintain feasibility.

® the solution may not be optimal Approximation?
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Problem Relaxation ' .
(IP) (LP) (integer)
P (integer )

P;n: (integer optimal x,,¢)

P* (fractional optimal z*)




Analysing the solution

Optimization
Problem
(IP)

relax

lsr?ctiopal solve round 7

elaxation z* i

i (integer)
P (integer ¥)

(a)

P;n: (integer optimal x,,¢)

P* (fractional optimal z*)

(a) = Approximation ratio between X and Xin:.



Analysing the solution

Optimization | .. | Fractional | ¢jve round &
Problem Relaxation ' .
(IP) (LP) (integer)
P (integer )
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P;n: (integer optimal x,,¢)
(b)

P* (fractional optimal z*)

(a) = Approximation ratio between X and Xin:.

(b) = Approximation ration between £ and x*.
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Problem

Find a minimum number of vertices covering every edge of a graph.



Vertex cover |

Problem

Find a minimum number of vertices covering every edge of a graph.



Vertex cover |

Problem
Find a minimum number of vertices covering every edge of a graph.

Simple algorithm: ® One of Karp's 21 NP-complete

Step 1. Take an inclusionwise max- problems.

imal matching M. ® Moreover, it is APX-complete.

Step 2. Consider the end vertices of - No better than

the matching edges. 1.3606-approx. unless P =
NP.

Observation
- No better than 2-approx.

This gives a 2-approximation.
g PP assuming UGC.



Vertex cover |l

IP formulation

mianV
vev
Xy +x,>1 foruveE

x, € {0,1} forveV
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IP formulation

mianV
vev
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Step 1.
Take a fractional solution x*.
Step 2.
Define
R 1 ifx>1/2,
Sy =
0 otherwise.

LP relaxation
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Vertex cover |l

IP formulation LP relaxation
min Z Xy min Z Xy
vev vev
Xy +x,>1 foruveE Xy +x,>1 foruvekE
x, € {0,1} forveV x, =0 forveV
Step 1. 0.4 1 0
Take a fractional solution x*.
Step 2.
Define 1

R 1 ifx;>1/2
Sy =
0 otherwise. 1 0.3
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IP formulation LP relaxation
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Vertex cover |l

IP formulation LP relaxation
min Z Xy min Z Xy
vev vev
Xy +x,>1 foruveE Xy +x,>1 foruvekE
x, € {0,1} forveV x, =0 forveV
Step 1. 0 1 0
Take a fractional solution x*.
Step 2.
Define 1
R 1 ifx>1/2,
Sy =
0 otherwise. 1 0
Proof.

Note that X is integral, feasible, and X, < 2- x}. Hence
*

Z)?\,gsz‘,gZ-OPT.

veV vev



Threshold vs. iterative rounding

Threshold rounding

Oplilm;fatmn relax ll:r?itctlopal solve X round &
roblem elaxation a .
(IP) (LP) (integer)
Iterative rounding
Optimization | ;. | Fractional | ¢ 1ve good part round (intfger)
Problem Relaxation - - - -

(IP) (LP) bad part
r Residual problem |




Integrality gap

P (integer T)
(a)

P;n: (integer optimal @)

(b)

P* (fractional optimal x*)

(a) = Approximation ratio between X and xn:.

(b) = Approximation ration between £ and x™.



Integrality gap

(a)

P (integer T)

P;n: (integer optimal @)

(b)

(©)

P* (fractional optimal x*)

(a) = Approximation ratio between X and xn:.

(b) = Approximation ration between £ and x™.

(c) = Integrality gap.



Heuristics - Local search

min c(x)
st. xeF

Algorithm:

@ Start at some x € F.

@® Evaluate c(x), and evaluate c(y) for “neighbors” y € F of x.
® If c(y) < c¢(x), the move to y and repeat.
® QOtherwise stop: local optimum has been found.

Remarks:

® Specifics are determined once “neighbors” are defined.

e Simplex method can be viewed as a special case.

® |n practice: run repeatedly starting from different initial solutions.

® Tradeoff: better solution is likely to obtained when considering larger
neighborhood, but this results in slower running time.



Heuristics - Simulated annealing |

Main drawback of local search: Only finds local minimum.
Idea: Allow occasional moves to feasible solutions with higher costs.

Algorithm: For every state x € F, a set N(x) C F of neighbors is given
(y € N(x) & x € N(y)).

@ Start from state x € F.

@® Select a random neighbor y of x with probability gy, .
[Here g5, > 0 and }° (i) Gy = 1]
® Compute the difference c(y) — c(x).

® If ¢(y) < c(x), then move to state y.
® If c(y) > c(x), then move to state y with probability e~(c®)=<C)/T,

Remarks:

® When the temperature T is small - cost increases are unlikely.

® When T is large - the value of c(y) — c(x) has insignificant effect.



Heuristics - Simulated annealing Il

The procedure evolves as a Markov chain. Let A=Y, e <()/T.

Steady-state distribution:
e—c()/T
A

= 7(x) falls exponentially with c(x). Hence if T is small, then almost all of

m(x) =

the steady-state probability is concentrated on states minimizing c(x) globally.
Should we set T to some very small constant then?

Drawback: the lower the value of T, the harder it is to escape from a local
minimum and the longer it takes to reach steady-state.

Instead: Let the temperature vary with time:

C
T(t) = logt’

If C is sufficiently large, then lim;_, o, P(x(t) is optimal) = 1.




Reading assignment

¥ D. Bertsimas, J.N. Tsitsiklis. Introduction to linear optimization.
® Chapter 11, Sections 11.2, 11.6, and 11.7



Exercises

Submission deadline: The starting time of the next lecture.

@ Consider the following integer programming problem.

maximize X1 + 2x2

subject to  —3x3 + 4x2

X1, X2 integer
Use a figure to answer the following questions.

® What is the optimal cost of the linear programming relaxation? What is the
optimal cost of the integer programming problem? (1pt)

® What is the convex hull of the set of all solutions to the integer
programming problem? (1pt)



Exercises

@® A company is manufacturing k different products using m resources. The amounts of
available resources are given, together with the requirement of each of them for the

different products. The selling price of the products are also known.
® Write up an IP model that aims at maximizing the total profit. (1pt)
® Adjust the model if starting the production of product / requires a cost of
si. (1pt)

© Consider the integer programming problem

minimize  Xp41
subject to  2x3 +2xp+ -+ 2Xp + Xpr1 =N
x; € {0,1}
Show that any branch and bound algorithm that uses LP relaxations to compute lower

bounds, and branches by setting a fractional variable to either zero or one, will require
the enumeration of an exponential number of subproblems when n is odd. (2pts)



Exercises

@ The pagination problem faced by a document processing program like IATEX can be
abstracted as follows. The text consists of a sequence 1,...,n of n items (words,
formulas, etc.). A page that starts with item i and ends with item j is assigned an
attractiveness factor ¢;;. Assuming that the factors ¢j are available, we wish to
maximize the total attractiveness of the paginated text. Develop an algorithm for this
problem. (Hint: try to use recursive approach.) (2pts)



