Optimization

Fall semester 2022/23

Kristóf Bérczi

Eötvös Loránd University Institute of Mathematics Department of Operations Research

Lecture 2: Integer programming

 $x_1 + 2 \cdot x_2 \leqslant 8$ $2 \cdot x_1 + x_2 \leqslant 6$ $x_1, x_2 \geqslant 0$

 $x_1 + 2 \cdot x_2 \leqslant 8$ $2 \cdot x_1 + x_2 \leqslant 6$ $x_1, x_2 \ge 0$ $x_1, x_2 \in \mathbb{Z}$

 $x_1 + 2 \cdot x_2 \leqslant 8$ $2 \cdot x_1 + x_2 \leqslant 6$ $x_1, x_2 \ge 0$ $x_1, x_2 \in \mathbb{Z}$

 $x_1 + 2 \cdot x_2 \leqslant 8$ $2 \cdot x_1 + x_2 \leqslant 6$ $x_1, x_2 \ge 0$ $x_1, x_2 \in \mathbb{Z}$

$$x_1 + 10 \cdot x_2 \leqslant 10$$
$$x_1 - 10 \cdot x_2 \leqslant 0$$
$$x_1, x_2 \geqslant 0$$
$$\max\{x_1\}$$

$$x_1 + 10 \cdot x_2 \leqslant 10$$
$$x_1 - 10 \cdot x_2 \leqslant 0$$
$$x_1, x_2 \geqslant 0$$
$$\max\{x_1\}$$

$$x_1 + 10 \cdot x_2 \leqslant 10$$
$$x_1 - 10 \cdot x_2 \leqslant 0$$
$$x_1, x_2 \geqslant 0$$
$$\max\{x_1\}$$

The fractional optimum can be far from the integer one.

Approaches

Bad news: integer programming is NP-complete

Approaches

Bad news: integer programming is NP-complete

Good news: there exist efficient algorithms

- totally unimodular matrices
 - every square submatrix has determinant 0, ± 1 or ± 1
- cutting plane methods
 - adding further inequalities that separate the actual optimum from the convex hull of the true feasible set
- branch and bound methods
 - systematically enumerating the candidate solutions, forming a rooted tree
- rounding methods (threshold rounding, iterative rounding)
 - rounding the coordinates of an optimal fractional solution
- heuristic methods (tabu search, hill climbing, simulated annealing, ant colony optimization, etc)
 - some would call these 'voodoo'...

min
$$c(x)$$

s.t. $x \in F$

Here F is the set of integer feasible solutions to the problem.

Ideas:

- Partition F into subsets F₁,..., F_k, and solve the subproblems min c(x)
 s.t. x ∈ F_i. [May be as difficult as the original one, hence split into further subproblems branching part.]
- Compute lower bounds $b(F_i)$ for the subproblems. [A lower bound might be easy to obtain, e.g. LP relaxation **bounding part**.]
- Mainatin an upper bound *U* on the optimal cost. [E.g. the cost of the best feasible solution thus far.]

Key observation: If $b(F_i) \ge U$, then the subproblem need not be considered further.

Branch and bound II

Algorithm (general step):

- $I Select an active subproblem F_i.$
- 2 If the subproblem is infeasibe, delete it; otherwise compute $b(F_i)$.
 - If $b(F_i) \ge U$, delete the subproblem.
 - If b(F_i) < U, either determine an optimal solution for F_i, or break it into further (active) subproblems.

Remarks:

- Choosing the subproblem, e.g. BFS or DFS.
- Computing the lower bounds, e.g. LP relaxation.
- Breaking into subproblems.

Given a minimization problem, an α -approximation algorithm provides a solution of value at most $\alpha \cdot OPT$.

Integer program	
min $c^T \cdot x$	
$A \cdot x \leqslant b$	
$x \in \mathbb{Z}^n$	

Naiv approach:

- 1. remove the integrality constraint,
- 2. solve the corresponding LP, and
- 3. round the entries of the solution to get an integer solution.

Problems:

- the solution may not be feasible
- the solution may not be optimal

Maintain feasibility. Approximation?

(a) = Approximation ratio between \hat{x} and x_{int} .

(a) = Approximation ratio between x̂ and x_{int}.
(b) = Approximation ration between x̂ and x*.

Problem

Find a minimum number of vertices covering every edge of a graph.

Problem

Find a minimum number of vertices covering every edge of a graph.

Problem

Find a minimum number of vertices covering every edge of a graph.

Simple algorithm:

Step 1. Take an inclusionwise maximal matching *M*.

Step 2. Consider the end vertices of the matching edges.

Observation

This gives a 2-approximation.

- One of Karp's 21 NP-complete problems.
- Moreover, it is APX-complete.
 - No better than
 - 1.3606-approx. unless P = NP.
 - No better than 2-approx. assuming **UGC**.

IP formulation

$$\begin{split} \min \sum_{v \in V} x_v \\ x_u + x_v \geqslant 1 \quad \text{for } uv \in E \\ x_v \in \{0,1\} \quad \text{for } v \in V \end{split}$$

IP formulation

$$\begin{split} \min \sum_{v \in V} x_v \\ x_u + x_v \geqslant 1 \quad \text{for } uv \in E \\ x_v \in \{0,1\} \quad \text{for } v \in V \end{split}$$

IP formulation

$$\begin{split} \min \sum_{v \in V} x_v \\ x_u + x_v \geqslant 1 \quad \text{for } uv \in E \\ x_v \in \{0,1\} \quad \text{for } v \in V \end{split}$$

Step 1.

Take a fractional solution x^* .

Step 2.

Define

$$\hat{x}_{v} = \begin{cases} 1 & \text{if } x_{v}^{*} \geqslant 1/2, \\ 0 & \text{otherwise.} \end{cases}$$

IP formulation

$$\begin{split} \min \sum_{v \in V} x_v \\ x_u + x_v \geqslant 1 \quad \text{for } uv \in E \\ x_v \in \{0,1\} \quad \text{for } v \in V \end{split}$$

Step 1.

Take a fractional solution x^* .

Step 2.

Define

$$\hat{x}_{v} = \begin{cases} 1 & \text{if } x_{v}^{*} \geqslant 1/2, \\ 0 & \text{otherwise.} \end{cases}$$

IP formulation

$$\begin{split} \min \sum_{v \in V} x_v \\ x_u + x_v \geqslant 1 \quad \text{for } uv \in E \\ x_v \in \{0,1\} \quad \text{for } v \in V \end{split}$$

Step 1.

Take a fractional solution x^* .

Step 2.

Define

$$\hat{x}_{v} = \begin{cases} 1 & \text{if } x_{v}^{*} \geqslant 1/2, \\ 0 & \text{otherwise.} \end{cases}$$

IP formulation

$$\begin{split} \min \sum_{v \in V} x_v \\ x_u + x_v \geqslant 1 \quad \text{for } uv \in E \\ x_v \in \{0,1\} \quad \text{for } v \in V \end{split}$$

Step 1.

Take a fractional solution x^* .

Step 2.

Define

$$\hat{x}_{v} = \begin{cases} 1 & \text{if } x_{v}^{*} \geqslant 1/2, \\ 0 & \text{otherwise.} \end{cases}$$

IP formulation

$$\begin{split} \min \sum_{v \in V} x_v \\ x_u + x_v \geqslant 1 \quad \text{for } uv \in E \\ x_v \in \{0,1\} \quad \text{for } v \in V \end{split}$$

Step 1.

Take a fractional solution x^* .

Step 2.

Define

$$\hat{x}_{v} = \begin{cases} 1 & \text{if } x_{v}^{*} \geqslant 1/2, \\ 0 & \text{otherwise.} \end{cases}$$

IP formulation

$$\begin{split} \min \sum_{v \in V} x_v \\ x_u + x_v \geqslant 1 \quad \text{for } uv \in E \\ x_v \in \{0,1\} \quad \text{for } v \in V \end{split}$$

Step 1.

Take a fractional solution x^* .

Step 2.

Define

$$\hat{x}_{v} = \begin{cases} 1 & \text{if } x_{v}^{*} \geqslant 1/2, \\ 0 & \text{otherwise.} \end{cases}$$

IP formulation

$$\begin{split} \min \sum_{v \in V} x_v \\ x_u + x_v \geqslant 1 \quad \text{for } uv \in E \\ x_v \in \{0,1\} \quad \text{for } v \in V \end{split}$$

Step 1.

Take a fractional solution x^* .

Step 2.

Define

$$\hat{x}_{\nu} = \begin{cases} 1 & \text{if } x_{\nu}^* \geqslant 1/2, \\ 0 & \text{otherwise.} \end{cases}$$

LP relaxation

Proof.

Note that \hat{x} is integral, feasible, and $\hat{x}_{\nu} \leq 2 \cdot x_{\nu}^{*}$. Hence

$$\sum_{v \in V} \hat{x}_v \leqslant 2 \cdot \sum_{v \in V} x_v^* \leqslant 2 \cdot OPT$$

(a) = Approximation ratio between \hat{x} and x_{int} .

(b) = Approximation ration between \hat{x} and x^* .

P (integer \hat{x})

 P_{int} (integer optimal x_{int})

 P^* (fractional optimal x^*)

(a) = Approximation ratio between \hat{x} and x_{int} .

(b) = Approximation ration between \hat{x} and x^* .

(c) = Integrality gap.

$$(min c(x))$$
s.t. $x \in F$

Algorithm:

- Start at some $x \in F$.
- **2** Evaluate c(x), and evaluate c(y) for "neighbors" $y \in F$ of x.
 - If c(y) < c(x), the move to y and repeat.
 - Otherwise stop: *local optimum* has been found.

Remarks:

- Specifics are determined once "neighbors" are defined.
- Simplex method can be viewed as a special case.
- In practice: run repeatedly starting from different initial solutions.
- Tradeoff: **better solution** is likely to obtained when considering **larger neighborhood**, but this results in **slower running time**.

Heuristics - Simulated annealing I

Main drawback of local search: Only finds local minimum.

Idea: Allow occasional moves to feasible solutions with higher costs.

Algorithm: For every state $x \in F$, a set $N(x) \subseteq F$ of neighbors is given $(y \in N(x) \Leftrightarrow x \in N(y))$.

• Start from state $x \in F$.

2 Select a random neighbor y of x with probability q_{xy} . [Here $q_{xy} \ge 0$ and $\sum_{y \in N(x)} q_{xy} = 1$.]

3 Compute the difference c(y) - c(x).

- If $c(y) \leq c(x)$, then move to state y.
- If c(y) > c(x), then move to state y with probability $e^{-(c(y)-c(x))/T}$.

Remarks:

- When the temperature T is small cost increases are unlikely.
- When T is large the value of c(y) c(x) has insignificant effect.

Heuristics - Simulated annealing II

The procedure evolves as a Markov chain. Let $A = \sum_{z \in F} e^{-c(z)/T}$.

Steady-state distribution:

$$\pi(x)=\frac{e^{-c(x)/T}}{A},$$

 $\Rightarrow \pi(x)$ falls exponentially with c(x). Hence if T is small, then almost all of the steady-state probability is concentrated on states minimizing c(x) globally. Should we set T to some very small constant then?

Drawback: the lower the value of T, the harder it is to escape from a local minimum and the longer it takes to reach steady-state.

Instead: Let the temperature vary with time:

$$T(t) = rac{C}{\log t}.$$

Thm.

If C is sufficiently large, then $\lim_{t\to\infty} P(x(t) \text{ is optimal}) = 1$.

🛸 D. Bertsimas, J.N. Tsitsiklis. Introduction to linear optimization.

• Chapter 11, Sections 11.2, 11.6, and 11.7

Exercises

Submission deadline: The starting time of the next lecture.

1 Consider the following integer programming problem.

Use a figure to answer the following questions.

- What is the optimal cost of the linear programming relaxation? What is the optimal cost of the integer programming problem? (1pt)
- What is the convex hull of the set of all solutions to the integer programming problem? (1pt)

- A company is manufacturing k different products using m resources. The amounts of available resources are given, together with the requirement of each of them for the different products. The selling price of the products are also known.
 - Write up an IP model that aims at maximizing the total profit. (1pt)
 Adjust the model if starting the production of product *i* requires a cost of s_i. (1pt)
- 3 Consider the integer programming problem

minimize
$$x_{n+1}$$

subject to $2x_1 + 2x_2 + \dots + 2x_n + x_{n+1} = n$
 $x_i \in \{0, 1\}$

Show that any branch and bound algorithm that uses LP relaxations to compute lower bounds, and branches by setting a fractional variable to either zero or one, will require the enumeration of an exponential number of subproblems when n is odd. (2pts)

The pagination problem faced by a document processing program like LATEX can be abstracted as follows. The text consists of a sequence 1,..., n of n items (words, formulas, etc.). A page that starts with item i and ends with item j is assigned an attractiveness factor c_{ij}. Assuming that the factors c_{ij} are available, we wish to maximize the total attractiveness of the paginated text. Develop an algorithm for this problem. (Hint: try to use recursive approach.) (2pts)