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General information

• Objective: To give an overview of basic techniques and results. An ideal

outcome is that you can use these ideas in your work after this course.
• basics of linear programming, LP solving techniques, integer programming,

convex sets and functions, convex optimization

• Course structure: 6 lectures, each lecture consists of a theoretical and a

practical part

• Course requirement: 50% exam (end of semester), 50% homework

(100%=30pts in total)

• Contact: kristof.berczi@ttk.elte.hu, Room 3-502
• Reading:

• D. Bertsimas, J.N. Tsitsiklis. Introduction to linear optimization.

• N. Vishnoi. Algorithms for convex optimization.

• L.C. Lau. Convexity and optimization.

• S. Bubeck. Convex Optimization: Algorithms and Complexity.

• S. Boyd, L. Vandenberghe. Convex Optimization.

• `I'm a bandit' blog by Sébastien Bubeck.

• `3Blue1Brown' channel by Grant Sanderson.

https://convex-optimization.github.io/
https://cs.uwaterloo.ca/~lapchi/cs798/notes.html
http://research.microsoft.com/en-us/um/people/sebubeck/bubeck15.pdf
https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf
https://blogs.princeton.edu/imabandit/
https://www.3blue1brown.com


Lecture 1: Linear programming



Systems of linear equations

Example: A �rm produces two di�erent goods using two di�erent raw materials.

The available amounts of materials are 12 and 5, respectively. The goods

require 2 and 3 units of the �rst material, and both require 1 unit of the second

material. Find a production plan that uses all the raw materials.

Idea: Let x1 and x2 denote the amounts of the �rst and second goods

produced, respectively. Then the constraints can be written as

2 · x1 + 3 · x2 = 12

x1 + x2 = 5

x1 x2

2 3

1 1
= 12

5

Solution

Step 1. x1 = 5− x2
Step 2. 10− 2 · x2 + 3 · x2 = 12 ⇒ x2 = 2

Step 3. x1 = 5− 2 = 3



In general

In general: Gauss elimination

x1 x2 . . . xn

a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...

am1 am2 . . . amn

=

b1
b2
...

bm

⇒

x1 x2 . . . xn

1 a′
12

. . . a′
1n

0 1 . . . a′
2n

...
...

. . .
...

0 0 . . . a′mn

=

b′
1

b′
2

...

b′m

Reduction of the matrix using elementary row operations, such as

• swapping two rows,

• multiplying a row by a nonzero number,

• adding a multiple of a row to another row.

Remarks:

• The set of solutions does not change.

• A �nal solution is `easy' to read out.



Existence of a solution

Assume that your boss gives you such a problem, that is, solve Ax = b.

How to prove that a solution exists?

• Just provide a solution x .

How to prove that there is no solution?

• Gauss elimination concludes whether there exists a solution or not.

BUT: this requires the understanding of the algorithm (that you cannot

necessarily assume about your boss...)

• Would it be possible to provide some `shorter' proof?



Fredholm alternative theorem

Fredholm alternative theorem

There exists an x satisfying Ax = b if and only if there exists no y such that

yA = 0, yb ̸= 0.

Proof of `only if' direction.

We show that at most one of x and y may exist. Suppose to the contrary that

x and y are such that Ax = b and yA = 0, yb ̸= 0. Then

0 = (yA)x = y(Ax) = yb ̸= 0,

a contradiction.

Conclusion: The non-existence of a solution can be proved by providing y .



Geometric interpretation

Naming convention:

Primal problem

Ax = b (P)

Dual problem

yA = 0

yb ̸= 0
(D)

⇒ Fredholm's theorem states that exactly one of (P) and (D) has a solution.

• The set H := {x : ax = b} is a hyperplane.

• y is a normal vector of the hyperplane H = {x : ax = b} if yx = 0 for

every x ∈ H.

Fredholm as separation theorem

Either b lies in the subspace generated by the

columns of A, or it can be separated from it by

a homogeneous hyperplane with normal vector y .



The diet problem

What happens if, instead of equalities, a system of linear inequalities is given?

Example: A list of available foods is given together with the nutrient content.

Furthermore, the requirement per day of each nutrient is also prescribed. For

example, the data corresponding to two types of fruits (F1 and F2) and three

types of nutrients (fats, proteins, vitamins) is as follows:

Fats Proteins Vitamins Available

F1 1 4 5 3

F2 0 2 9 5

Req. 1 5 14

The problem is to �nd how much of each fruit to consume per day so as to get

the required amount per day of each nutrient, if one can consume at most 2 kg

of fruits per day.



Modeling the problem

Fats Proteins Vitamins Available

F1 1 4 5 3

F2 0 2 9 5

Req. 1 5 14

Let x1 and x2 denote the amounts of fruits F1 and F2 to be consumed per day.

x1 ⩾ 1

4x1 + 2x2 ⩾ 5

5x1 + 9x2 ⩾ 14

x1 + x2 ⩽ 2

Questions:

• How to decide feasibility?

• How to �nd a solution (if exists) algorithmically?

• How to verify that there is no solution?



Di�erent forms

Observations:

• An equality ax = b can be represented as a pair of inequalities ax ⩽ b and

−ax ⩽ −b.

• An inequality ax ⩽ b can be represented as the combination of an equality

ax + s = b and a non-negativity constraint s ⩾ 0, where s is called a slack

variable.

• A non-positivity constraint x ⩽ 0 can be expressed as a non-negativity

constraint −x ⩾ 0.

• A variable x unrestricted in sign can be replaced everywhere by x+ − x−,

where x+, x− ⩾ 0.

General form

Px0 + Ax1 = b0
Qx0 + Bx1 ⩽ b1

x1 ⩾ 0

Standard form

Ax = b

x ⩾ 0

Canonical form

Qx ⩽ b

x ⩾ 0



Farkas' lemma

Farkas' lemma, standard form

There exists an x satisfying (P) Ax = b, x ⩾ 0 if and only if there exists no y

such that (D) yA ⩾ 0, yb < 0.

Farkas' lemma as separation theorem

Either b lies in the cone generated by the columns

of A, or it can be separated from it by a homoge-

neous hyperplane with normal vector y .
y

b {Ax : x ≥ 0}

Proof of the `only if' direction.

We show that at most one of x and y may exist. Suppose to the contrary that

x and y are such that Ax = b, x ⩾ 0 and yA ⩾ 0, yb < 0. Then

0 ⩽ (yA)x = y(Ax) = yb < 0,

a contradiction.



Farkas' lemma in general

Farkas' lemma, general form

There exists an x = (x0, x1) satisfying

(P) Px0 + Ax1 = b0,Qx0 + Bx1 ⩽ b1, x1 ⩾ 0

if and only if there exists no y = (y0, y1) such

that

(D) y0P + y1Q = 0, y0A + y1B ⩾ 0, y1 ⩾

0, y0b0 + y1b1 < 0.

P A

Q B

x0 x1

c0 c1

y0

y1

b0

b1≤

=

0 ≤

≥=

≥

0

0 0

Conclusion: The feasibility/infeasibility of a system of linear inequalities can be

proved by providing a solution to the primal/dual problem, respectively.

Remaining question: How to �nd such a solution?

⇒ We will answer this in a far more general setting!



Geometric background I

Example
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• An inequality ax ⩽ b de�nes a half space.

• The solution set is the intersection of a �nit number of half spaces, called

a polyhedron.
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Geometric background II

b

b

b b

b

b

b

• Given a polyhedron P, a point x ∈ P is a vertex of P if there exists no y

such that x + y , x − y ∈ P.

• A polytope is the convex hull of a �nite number of points.

Thm.

Every polytope is a polyhedron, and every bounded polyhedron is the convex

hull of its vertices.



Geometric background III
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Goal: Maximize/minimize a linear objective function over the set of solutions.

⇒ Example: max{x1 + x2}.

Idea: Start from a vertex, and move to a neighboring vertex with improved

objective value.
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Goal: Maximize/minimize a linear objective function over the set of solutions.
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Idea: Start from a vertex, and move to a neighboring vertex with improved

objective value.
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Goal: Maximize/minimize a linear objective function over the set of solutions.

⇒ Example: max{x1 + x2}.

Idea: Start from a vertex, and move to a neighboring vertex with improved

objective value.



Geometric background III

Example

x1+2 · x2 ⩽ 8

2 · x1+ x2 ⩽ 6

x1, x2 ⩾ 0
bb b

b b b

b b b

b b b b

b

bb

b

b

b b b b

b b b

b

b b b b b b

b

b

b

b

b

b

x1

x2

Goal: Maximize/minimize a linear objective function over the set of solutions.

⇒ Example: max{x1 + x2}.

Idea: Start from a vertex, and move to a neighboring vertex with improved

objective value.



Geometric background III

Example

x1+2 · x2 ⩽ 8

2 · x1+ x2 ⩽ 6

x1, x2 ⩾ 0
bb b

b b b

b b b

b b b b

b

bb

b

b

b b b b

b b b

b

b b b b b b

b

b

b

b

bb

x1 + x2 = 0
x1

x2

Goal: Maximize/minimize a linear objective function over the set of solutions.

⇒ Example: max{x1 + x2}.

Idea: Start from a vertex, and move to a neighboring vertex with improved

objective value.



Geometric background III

Example

x1+2 · x2 ⩽ 8

2 · x1+ x2 ⩽ 6

x1, x2 ⩾ 0
bb b

b b b

b b b

b b b b

b

bb

b

b

b b b b

b b b

b

b b b b b b

b

b

b

b

bb

x1 + x2 = 3

b
x1

x2
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History

1827, Fourier: Fourier-Motzkin elimination

1939, Kantorovich: reducing costs of army, general LP

1940's, Koopmans: economic problems as LPs

1941, Hitchcock: transportation problems as LPs

1946-47, Dantzig: general LP for planning problems in US Air Force (simplex

method)

1979, Khachiyan: ellipsoid method, LP is solvable in linear time (more

theoretical than practical)

1984, Karmakar: interior-point method (can be used in practice)



Linear programs

We would like to solve problems of the form

General form

max c0x0 + c1x1
s.t. Px0 + Ax1 = b0

Qx0 + Bx1 ⩽ b1
x1 ⩾ 0

Standard form

max cx

s.t. Ax = b

x ⩾ 0

Canonical form

max cx

s.t. Qx ⩽ b

x ⩾ 0

Remarks:

• A minimization problem min cx can be reformulated as a maximization

problem max (−c)x and vice versa.

• The optimal solution can be obtained by `moving' a hyperplane with

normal vector c towards the polyhedron, and �nding the �rst point where

they meet [Be careful: min or max?]

⇒ Intuition: the optimum is always attained at a vertex.



Geometric background IV

b

b
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b

Possible cases:

• single optimal solution,

• in�nite number of optimal solutions, or

• no optimal solution (unbounded objective value).



Geometric background V

Thm.

Let P = {x : Qx ⩽ b} where the columns of Q are linearly independent. Then

x ∈ P is a vertex if and only if it can be obtained by taking a non-singular

r(Q)× r(Q) submatrix Q ′ of Q and the corresponding part b′ of b, and solving

the system Q ′x = b′.

Remarks:

• The number of such submatrices, and so the number of vertices is �nite.

⇒ If each vertex is visited at most once, then the procedure terminates.

• When the columns are non-independent, then there is an in�nite number

of basic feasible solutions. However, there are only a �nite number of

so-called strong basic feasible solutions, and, if it exists, the optimum is

attained in one of them.



Simplex method

B

x = B−1b

b≤a′a

B

x = B−1b

b≤

⇓

B

x′ = B′−1b

b≤a′

⇓

Problems

• Running time?

• Optimal solution?



Running time

Problem 1: The simplex algorithm might fail to terminate.

Reason: The algorithm can fall into cycles between bases associated with the

same basic feasible solution and objective value.

Solution: Careful pivoting rule, e.g. Bland's rule prevents cycling.

Problem 2: E�cient in practice, but for almost every variant, there is a family

of linear programs for which it performs badly.

Reason: The number of vertices of a polyhedron can be exponentially large.

Solution: Sub-exponential pivot rules are known.

Major open problem: Is there a variant with polynomial running time?

• Hirsch's conjecture: Let P be a d-dimensional convex polytope with n

facets. Then the diameter of P is at most n − d .

• Counterexample by Francisco Santos, 2011 (86 facets, 43-dimensional).



Duality theorem

Problem 3: Is the solution optimal?

Duality theorem

Consider the problems

(P) max(c0x0 + c1x1) s.t. Px0 + Ax1 =

b0,Qx0 + Bx1 ⩽ b1, x1 ⩾ 0

and

(D) min(y0b0 + y1b1) s.t. y0P + y1Q =

c0, y0A+ y1B ⩾ c1, y1 ⩾ 0.

Then exactly one of the followings hold:

1 both (P) and (D) are empty,

2 (D) is empty and (P) is unbounded,

3 (P) is empty and (D) is unbounded,

4 both (P) and (D) have a solution, and

max = min.

P A

Q B

x0 x1

c0 c1

y0

y1

b0

b1≤

=

0 ≤

≥=

≥

0



Reading assignment

D. Bertsimas, J.N. Tsitsiklis. Introduction to linear optimization.

• Chapter 1, Sections 1.1, 1.2, 1.4, and 1.5

• Chapter 2, Sections 2.1 and 2.2

• Chapter 4, Sections 4.1-4.3, 4.6

A. Frank. Operációkutatás (in Hungarian).

• Chapter 2

• Chapter 3

• Chapter 4



Exercises

Submission deadline: The starting time of the next lecture.

1 Bob would like to write down the system 3x + 2y + 4z = 8, −3y ⩽ 3, x − 3z ⩾ 10,

min x − y , but his keyboard is missing the symbols = and ⩾, and the letter i is not

working. Reformulate the problem only using ⩽ and maximization. (1pt)

2 Prove that the system Ax ⩽ 0, x ≫ 0 admits a solution if and only if Ax ⩽ 0, x ⩾ 1 has

one. (1pt)

3 Consider the problem x2 ⩽ 4, x1 + x2 ⩽ 6, 2x1 + x2 ⩽ 10, x1, x2 ⩾ 0. Represent these

constraints on the plane. Find a point that maximizes x1 + 2x2. (2pts)

4 Verify the `only if' direction in the general form of Farkas' lemma. (1pt)

5 Assume that both (P) and (D) has a solution in the duality theorem. Prove that weak

duality holds, that is, max ⩽ min. (1pt)

6 Let A ∈ Rm×n, b ∈ Rm, and c1, . . . , ck ∈ Rn. Formulate the following problem as an

LP: Ax = b, x ⩾ 0, min f (x), where f (x) := max{c1x , . . . , ckx}. (1pt)
7 Reduce the following systems of inequalities to each other (in the sense that if we can

solve one of them, then we can solve any of them):
Ax = b

x ⩾ 0

Bx ⩽ b

x ⩾ 0
Qx ⩽ b

Px0 = b0
Qx ⩽ b1

Write up Farkas' lemma for all of them. (3pts)
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